Seamus J Martin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6481756/seamus-j-martin-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

147	38,262	77	182
papers	citations	h-index	g-index
182 ext. papers	42,121 ext. citations	11.2 avg, IF	7.11 L-index

#	Paper	IF	Citations
147	TRAIL Receptors Serve as Stress-Associated Molecular Patterns to Promote ER-Stress-Induced Inflammation. <i>Developmental Cell</i> , 2020 , 52, 714-730.e5	10.2	19
146	How to prepare and deliver a great talk. FEBS Journal, 2019, 286, 39-45	5.7	
145	To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. <i>Cell Death and Differentiation</i> , 2019 , 26, 395-408	12.7	185
144	Identification of small-molecule elastase inhibitors as antagonists of IL-36 cytokine activation. <i>FEBS Open Bio</i> , 2018 , 8, 751-763	2.7	11
143	Suppressing IL-36-driven inflammation using peptide pseudosubstrates for neutrophil proteases. <i>Cell Death and Disease</i> , 2018 , 9, 378	9.8	27
142	Mind Bomb Regulates Cell Death during TNF Signaling by Suppressing RIPK1's Cytotoxic Potential. <i>Cell Reports</i> , 2018 , 23, 470-484	10.6	18
141	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. <i>Cell Death and Differentiation</i> , 2018 , 25, 486-541	12.7	2160
140	Extracellular Neutrophil Proteases Are Efficient Regulators of IL-1, IL-33, and IL-36 Cytokine Activity but Poor Effectors of Microbial Killing. <i>Cell Reports</i> , 2018 , 22, 2937-2950	10.6	95
139	iTAP, a novel iRhom interactor, controls TNF secretion by policing the stability of iRhom/TACE. <i>ELife</i> , 2018 , 7,	8.9	29
138	Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory "FADDosome" Complex upon TRAIL Stimulation. <i>Molecular Cell</i> , 2017 , 65, 715-729.e5	17.6	126
137	Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors. <i>Molecular and Cellular Biology</i> , 2017 , 37,	4.8	64
136	Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines. <i>FEBS Journal</i> , 2017 , 284, 1712-1725	5.7	63
135	An Inflammatory Perspective on Necroptosis. <i>Molecular Cell</i> , 2017 , 65, 965-973	17.6	117
134	Proteomic and functional analysis identifies galectin-1 as a novel regulatory component of the cytotoxic granule machinery. <i>Cell Death and Disease</i> , 2017 , 8, e3176	9.8	12
133	Writing a successful fellowship or grant application. <i>FEBS Journal</i> , 2017 , 284, 3771-3777	5.7	4
132	Getting a gRIP on Flu by Casting the DAI. <i>Cell Host and Microbe</i> , 2016 , 20, 552-554	23.4	4
131	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838

(2013-2016)

130	Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines. <i>Cell Reports</i> , 2016 , 14, 708-722	10.6	167
129	Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. <i>FEBS Journal</i> , 2016 , 283, 2599-615	5.7	103
128	Measuring Apoptosis by Microscopy and Flow Cytometry. <i>Current Protocols in Immunology</i> , 2016 , 112, 14.38.1-14.38.24	4	21
127	Production of biologically active IL-36 family cytokines through insertion of N-terminal caspase cleavage motifs. <i>FEBS Open Bio</i> , 2016 , 6, 338-48	2.7	13
126	Autophagy in malignant transformation and cancer progression. EMBO Journal, 2015, 34, 856-80	13	801
125	Proteolytic Processing of Interleukin-1 Family Cytokines: Variations on a Common Theme. <i>Immunity</i> , 2015 , 42, 991-1004	32.3	267
124	Diverse Activators of the NLRP3 Inflammasome Promote IL-1 (Secretion by Triggering Necrosis. <i>Cell Reports</i> , 2015 , 11, 1535-48	10.6	150
123	A chromatin-independent role of Polycomb-like 1 to stabilize p53 and promote cellular quiescence. <i>Genes and Development</i> , 2015 , 29, 2231-43	12.6	25
122	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. <i>Cell Death and Differentiation</i> , 2015 , 22, 58-73	12.7	643
121	Fas and TRAIL Scleath receptorsSas initiators of inflammation: Implications for cancer. <i>Seminars in Cell and Developmental Biology</i> , 2015 , 39, 26-34	7.5	51
120	Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production. <i>Cell Death and Differentiation</i> , 2015 , 22, 1313-27	12.7	80
119	Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. <i>Molecular Cell</i> , 2014 , 55, 451-66	17.6	137
118	Inflammatory outcomes of apoptosis, necrosis and necroptosis. <i>Biological Chemistry</i> , 2014 , 395, 1163-71	4.5	112
117	Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. <i>Cell Reports</i> , 2014 , 9, 1538-53	10.6	104
116	RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis. <i>FEBS Journal</i> , 2014 , 281, 4921-34	5.7	57
115	Inhibitor of apoptosis proteins (IAPs) and their antagonists regulate spontaneous and tumor necrosis factor (TNF)-induced proinflammatory cytokine and chemokine production. <i>Journal of Biological Chemistry</i> , 2013 , 288, 4878-90	5.4	33
114	Fas/CD95-induced chemokines can serve as "find-me" signals for apoptotic cells. <i>Molecular Cell</i> , 2013 , 49, 1034-48	17.6	150
113	Autophagy in multiple myeloma: what makes you stronger can also kill you. <i>Cancer Cell</i> , 2013 , 23, 425-6	24.3	21

112	Measuring apoptosis by microscopy and flow cytometry. <i>Methods</i> , 2013 , 61, 90-7	4.6	116
111	A perspective on mammalian caspases as positive and negative regulators of inflammation. <i>Molecular Cell</i> , 2012 , 46, 387-97	17.6	149
110	Greasing the path to BAX/BAK activation. <i>Cell</i> , 2012 , 148, 845-6	56.2	6
109	Guidelines for the use and interpretation of assays for monitoring autophagy. <i>Autophagy</i> , 2012 , 8, 445-	5 44 .2	2783
108	Mitochondrial fusion: bax to the fussure. <i>Developmental Cell</i> , 2011 , 20, 142-3	10.2	9
107	Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. <i>Molecular Cell</i> , 2011 , 42, 23-35	17.6	330
106	Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1 Molecular Cell, 2011 , 44, 265-78	17.6	193
105	Staying alive: defensive strategies in the BCL-2 family playbook. <i>Molecular Cell</i> , 2011 , 44, 509-10	17.6	
104	Caspase-1 promiscuity is counterbalanced by rapid inactivation of processed enzyme. <i>Journal of Biological Chemistry</i> , 2011 , 286, 32513-24	5.4	64
103	Oncogene-induced autophagy and the Goldilocks principle. <i>Autophagy</i> , 2011 , 7, 922-3	10.2	15
102	An ERK-dependent pathway to Noxa expression regulates apoptosis by platinum-based chemotherapeutic drugs. <i>Oncogene</i> , 2010 , 29, 6428-41	9.2	66
101	Granzymes in cancer and immunity. <i>Cell Death and Differentiation</i> , 2010 , 17, 616-23	12.7	210
100	Cytotoxic and non-cytotoxic roles of the CTL/NK protease granzyme B. <i>Immunological Reviews</i> , 2010 , 235, 105-16	11.3	156
99	Caspase recruitment domain-containing protein 8 (CARD8) negatively regulates NOD2-mediated signaling. <i>Journal of Biological Chemistry</i> , 2010 , 285, 19921-6	5.4	32
98	Mitochondrial fission/fusion dynamics and apoptosis. <i>Mitochondrion</i> , 2010 , 10, 640-8	4.9	158
97	Cell biology. Opening the cellular poison cabinet. <i>Science</i> , 2010 , 330, 1330-1	33.3	9
96	Bcl-2 family proteins and mitochondrial fission/fusion dynamics. <i>Cellular and Molecular Life Sciences</i> , 2010 , 67, 1599-606	10.3	40
95	Nucleophosmin is cleaved and inactivated by the cytotoxic granule protease granzyme M during natural killer cell-mediated killing. <i>Journal of Biological Chemistry</i> , 2009 , 284, 5137-47	5.4	34

(2007-2009)

94	Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. <i>Immunity</i> , 2009 , 31, 84-98	32.3	514
93	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. <i>Cell Death and Differentiation</i> , 2009 , 16, 1093-107	12.7	533
92	Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. <i>Nature Protocols</i> , 2009 , 4, 1383-95	18.8	133
91	Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. <i>Molecular Cell</i> , 2009 , 36, 355-63	17.6	156
90	Apoptosis: calling time on apoptosome activity. <i>Science Signaling</i> , 2009 , 2, pe62	8.8	9
89	Bicaudal is a conserved substrate for Drosophila and mammalian caspases and is essential for cell survival. <i>PLoS ONE</i> , 2009 , 4, e5055	3.7	12
88	Apoptosis: controlled demolition at the cellular level. <i>Nature Reviews Molecular Cell Biology</i> , 2008 , 9, 231-41	48.7	1820
87	Mechanisms of granule-dependent killing. Cell Death and Differentiation, 2008, 15, 251-62	12.7	166
86	Commitment in apoptosis: slightly dead but mostly alive. Trends in Cell Biology, 2008, 18, 353-7	18.3	15
85	Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. <i>Molecular Cell</i> , 2008 , 31, 570-585	17.6	222
84	Analysis of apoptosis in cell-free systems. <i>Methods</i> , 2008 , 44, 273-9	4.6	5
83	Expression and purification of recombinant annexin V for the detection of membrane alterations on apoptotic cells. <i>Methods</i> , 2008 , 44, 235-40	4.6	57
82	Oncogenic B-RafV600E inhibits apoptosis and promotes ERK-dependent inactivation of Bad and Bim. <i>Journal of Biological Chemistry</i> , 2008 , 283, 22128-35	5.4	56
81	Two-dimensional gel-based analysis of the demolition phase of apoptosis. <i>Methods in Enzymology</i> , 2008 , 442, 343-54	1.7	5
80	Executioner caspase-3 and caspase-7 are functionally distinct proteases. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 12815-9	11.5	370
79	Caspase activation cascades in apoptosis. <i>Biochemical Society Transactions</i> , 2008 , 36, 1-9	5.1	150
78	The CASBAH: a searchable database of caspase substrates. <i>Cell Death and Differentiation</i> , 2007 , 14, 641	- 50 .7	329
77	Establishing a blueprint for CED-3-dependent killing through identification of multiple substrates for this protease. <i>Journal of Biological Chemistry</i> , 2007 , 282, 15011-21	5.4	29

76	Human and murine granzyme B exhibit divergent substrate preferences. <i>Journal of Cell Biology</i> , 2007 , 176, 435-44	7.3	102
75	Human and murine granzyme B exhibit divergent substrate preferences. <i>Journal of Experimental Medicine</i> , 2007 , 204, i4-i4	16.6	
74	Apoptosomes: protease activation platforms to die from. <i>Trends in Biochemical Sciences</i> , 2006 , 31, 243-	710.3	17
73	The cytotoxic lymphocyte protease, granzyme B, targets the cytoskeleton and perturbs microtubule polymerization dynamics. <i>Journal of Biological Chemistry</i> , 2006 , 281, 8118-25	5.4	67
72	Cell biology. Double knockout blow for caspases. <i>Science</i> , 2006 , 311, 785-6	33.3	14
71	Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics. <i>Molecular Cell</i> , 2006 , 21, 761-73	17.6	166
70	Mitochondrial membrane remodeling in apoptosis: an inside story. <i>Cell Death and Differentiation</i> , 2006 , 13, 2007-10	12.7	31
69	Caspase-independent cell death. <i>Nature Medicine</i> , 2005 , 11, 725-30	50.5	598
68	Molecular ordering of the caspase activation cascade initiated by the cytotoxic T lymphocyte/natural killer (CTL/NK) protease granzyme B. <i>Journal of Biological Chemistry</i> , 2005 , 280, 46	6 3:4 3	100
67	CARDINAL roles in apoptosis and NFkappaB activation. <i>Vitamins and Hormones</i> , 2004 , 67, 133-47	2.5	8
66	Pro-apoptotic proteins released from the mitochondria regulate the protein composition and caspase-processing activity of the native Apaf-1/caspase-9 apoptosome complex. <i>Journal of Biological Chemistry</i> , 2004 , 279, 19665-82	5.4	83
65	PIAS-1 is a checkpoint regulator which affects exit from G1 and G2 by sumoylation of p73. <i>Molecular and Cellular Biology</i> , 2004 , 24, 10593-610	4.8	72
64	Caspase-dependent inactivation of proteasome function during programmed cell death in Drosophila and man. <i>Journal of Biological Chemistry</i> , 2004 , 279, 36923-30	5.4	54
63	Partial cleavage of RasGAP by caspases is required for cell survival in mild stress conditions. <i>Molecular and Cellular Biology</i> , 2004 , 24, 10425-36	4.8	69
62	c-Myc: Where Death and Division Collide. <i>Cell Cycle</i> , 2004 , 3, 454-457	4.7	1
61	Smac/Diablo antagonizes ubiquitin ligase activity of inhibitor of apoptosis proteins. <i>Journal of Biological Chemistry</i> , 2004 , 279, 26906-14	5.4	51
60	Interchain proteolysis, in the absence of a dimerization stimulus, can initiate apoptosis-associated caspase-8 activation. <i>Journal of Biological Chemistry</i> , 2004 , 279, 36916-22	5.4	22
59	Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. <i>EMBO Journal</i> , 2004 , 23, 2134-45	13	208

(1999-2003)

58	In vitro selectivity, in vivo biodistribution and tumour uptake of annexin V radiolabelled with a positron emitting radioisotope. <i>British Journal of Cancer</i> , 2003 , 89, 1327-33	8.7	50
57	Cell stress-associated caspase activation: intrinsically complex?. Science Signaling, 2003, 2003, pe11	8.8	6
56	Iodine-124 labelled annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. <i>Applied Radiation and Isotopes</i> , 2003 , 58, 55-62	1.7	67
55	Caspase-activation pathways in apoptosis and immunity. <i>Immunological Reviews</i> , 2003 , 193, 10-21	11.3	248
54	The apoptosome pathway to caspase activation in primary human neutrophils exhibits dramatically reduced requirements for cytochrome C. <i>Journal of Experimental Medicine</i> , 2003 , 197, 625-32	16.6	90
53	Portrait of a killer: the mitochondrial apoptosome emerges from the shadows. <i>Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics</i> , 2003 , 3, 19-26		71
52	Caspases 2003 , 3-12		
51	The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. <i>Cell Death and Differentiation</i> , 2002 , 9, 1031-42	12.7	498
50	CARD games in apoptosis and immunity. <i>EMBO Reports</i> , 2002 , 3, 616-21	6.5	124
49	Destabilizing influences in apoptosis: sowing the seeds of IAP destruction. <i>Cell</i> , 2002 , 109, 793-6	56.2	111
48	Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. <i>EMBO Journal</i> , 2001 , 20, 6627-36	13	329
47	The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. <i>Trends in Biochemical Sciences</i> , 2001 , 26, 390-7	10.3	440
46	CARDINAL, a novel caspase recruitment domain protein, is an inhibitor of multiple NF-kappa B activation pathways. <i>Journal of Biological Chemistry</i> , 2001 , 276, 44069-77	5.4	85
45	Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. <i>Journal of Biological Chemistry</i> , 2001 , 276, 7320-6	5.4	736
44	Caspases: cellular demolition experts. <i>Biochemical Society Transactions</i> , 2001 , 29, 696-702	5.1	41
43	The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and -7 during TGEV-induced apoptosis. <i>Journal of Virology</i> , 2000 , 74, 3975-83	6.6	75
42	Failure of Bcl-2 to block cytochrome c redistribution during TRAIL-induced apoptosis. <i>FEBS Letters</i> , 2000 , 471, 93-8	3.8	87
41	Regulation of apoptotic protease activating factor-1 oligomerization and apoptosis by the WD-40 repeat region. <i>Journal of Biological Chemistry</i> , 1999 , 274, 20855-60	5.4	84

40	Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. <i>Journal of Cell Biology</i> , 1999 , 144, 281-92	7.3	1614
39	Serial killers: ordering caspase activation events in apoptosis. <i>Cell Death and Differentiation</i> , 1999 , 6, 1067-74	12.7	364
38	A Duel to the Death: Activated Caspases Meet Their Substrates. <i>Sepsis</i> , 1998 , 2, 21-29		5
37	Regulation of caspase activation in apoptosis: implications for transformation and drug resistance. <i>Cytotechnology</i> , 1998 , 27, 309-20	2.2	4
36	Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. <i>Cell Death and Differentiation</i> , 1998 , 5, 298-306	12.7	160
35	Inhibition of TNF-induced apoptosis by NF-kappa B. <i>Trends in Cell Biology</i> , 1998 , 8, 107-11	18.3	329
34	Regulation of caspase activation in apoptosis: implications for transformation and drug resistance 1998 , 309-320		
33	Degradation of retinoblastoma protein in tumor necrosis factor- and CD95-induced cell death. <i>Journal of Biological Chemistry</i> , 1997 , 272, 9613-6	5.4	134
32	Downregulation of Bcr-Abl in K562 cells restores susceptibility to apoptosis: characterization of the apoptotic death. <i>Cell Death and Differentiation</i> , 1997 , 4, 95-104	12.7	38
31	Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. <i>EMBO Journal</i> , 1997 , 16, 4639-49	13	315
30	Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. <i>Cell</i> , 1996 , 86, 189-99	56.2	710
29	Suppression of TNF-alpha-induced apoptosis by NF-kappaB. <i>Science</i> , 1996 , 274, 787-9	33.3	2401
28	Regulation of apoptosis by oncogenes. <i>Journal of Cellular Biochemistry</i> , 1996 , 60, 33-8	4.7	21
27	Phosphatidylserine externalization during CD95-induced apoptosis of cells and cytoplasts requires ICE/CED-3 protease activity. <i>Journal of Biological Chemistry</i> , 1996 , 271, 28753-6	5.4	286
26	Events in apoptosis. Acidification is downstream of protease activation and BCL-2 protection. Journal of Biological Chemistry, 1996 , 271, 16260-2	5.4	85
25	Cytotoxic lymphocyte killing enters the ice age. <i>Advances in Experimental Medicine and Biology</i> , 1996 , 406, 29-37	3.6	3
24	Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. <i>Nature</i> , 1995 , 373, 441-4	50.4	1192
23	Apoptosis and cancer: the failure of controls on cell death and cell survival. <i>Critical Reviews in Oncology/Hematology</i> , 1995 , 18, 137-53	7	128

(1990-1995)

22	The killer and the executioner: how apoptosis controls malignancy. <i>Current Opinion in Immunology</i> , 1995 , 7, 694-703	7.8	88
21	Regulation of the Fas apoptotic cell death pathway by Abl. <i>Journal of Biological Chemistry</i> , 1995 , 270, 22625-31	5.4	112
20	Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. <i>Journal of Experimental Medicine</i> , 1995 , 182, 1545-56	16.6	2493
19	FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. <i>Immunity</i> , 1995 , 2, 341-51	32.3	389
18	Protease activation during apoptosis: death by a thousand cuts?. <i>Cell</i> , 1995 , 82, 349-52	56.2	1247
17	The end of the (cell) line: methods for the study of apoptosis in vitro. <i>Methods in Cell Biology</i> , 1995 , 46, 153-85	1.8	379
16	Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. <i>Journal of Biological Chemistry</i> , 1995 , 270, 6425-8	5.4	428
15	Apoptosis During HIV Infection. Advances in Experimental Medicine and Biology, 1995, 129-138	3.6	6
14	Dicing with death: dissecting the components of the apoptosis machinery. <i>Trends in Biochemical Sciences</i> , 1994 , 19, 26-30	10.3	313
13	Apoptosis as a goal of cancer therapy. <i>Current Opinion in Oncology</i> , 1994 , 6, 616-21	4.2	74
12	Protein or RNA synthesis inhibition induces apoptosis of mature human CD4+ T cell blasts. <i>Immunology Letters</i> , 1993 , 35, 125-34	4.1	51
11	Apoptosis: suicide, execution or murder?. <i>Trends in Cell Biology</i> , 1993 , 3, 141-4	18.3	114
10	Programmed cell death (apoptosis) in lymphoid and myeloid cell lines during zinc deficiency. <i>Clinical and Experimental Immunology</i> , 1991 , 83, 338-43	6.2	80
9	Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. <i>Cell Proliferation</i> , 1991 , 24, 203-14	7.9	702
8	Ultraviolet B irradiation of human leukaemia HL-60 cells in vitro induces apoptosis. <i>International Journal of Radiation Biology</i> , 1991 , 59, 1001-16	2.9	154
7	Specific loss of microtubules in HL-60 cells leads to programmed cell death (apoptosis). <i>Biochemical Society Transactions</i> , 1990 , 18, 299-301	5.1	24
6	Induction of apoptosis (programmed cell death) in tumour cell lines by widely diverging stimuli. <i>Biochemical Society Transactions</i> , 1990 , 18, 343-5	5.1	57
5	The involvement of RNA and protein synthesis in programmed cell death (apoptosis) in human leukaemia HL-60 cells. <i>Biochemical Society Transactions</i> , 1990 , 18, 634-6	5.1	16

4	Disruption of microtubules induces an endogenous suicide pathway in human leukaemia HL-60 cells. <i>Cell Proliferation</i> , 1990 , 23, 545-59	7.9	13
	Identification and characterization of a low molecular mass cell surface antigen which is deposited		

Identification and characterization of a low molecular mass cell surface antigen which is deposited extracellularly by differentiating U-937 cells. *Biochemical Society Transactions*, **1989**, 17, 418-419

2 Caspases: Agents of Defense and Destruction259-281

TRAIL signalling promotes entosis in colorectal cancer

1