Seamus J Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6481756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
3	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
4	Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl Journal of Experimental Medicine, 1995, 182, 1545-1556.	4.2	2,694
5	Suppression of TNF-alpha -Induced Apoptosis by NF-kappa B. Science, 1996, 274, 787-789.	6.0	2,565
6	Apoptosis: controlled demolition at the cellular level. Nature Reviews Molecular Cell Biology, 2008, 9, 231-241.	16.1	2,127
7	Ordering the Cytochrome c–initiated Caspase Cascade: Hierarchical Activation of Caspases-2, -3, -6, -7, -8, and -10 in a Caspase-9–dependent Manner. Journal of Cell Biology, 1999, 144, 281-292.	2.3	1,745
8	Protease activation during apoptosis: Death by a thousand cuts?. Cell, 1995, 82, 349-352.	13.5	1,345
9	Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature, 1995, 373, 441-444.	13.7	1,305
10	Autophagy in malignant transformation and cancer progression. EMBO Journal, 2015, 34, 856-880.	3.5	1,012
11	Executioner Caspase-3, -6, and -7 Perform Distinct, Non-redundant Roles during the Demolition Phase of Apoptosis. Journal of Biological Chemistry, 2001, 276, 7320-7326.	1.6	892
12	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	5.0	811
13	Doseâ€dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Proliferation, 1991, 24, 203-214.	2.4	790
14	Acid Sphingomyelinase–Deficient Human Lymphoblasts and Mice Are Defective in Radiation-Induced Apoptosis. Cell, 1996, 86, 189-199.	13.5	780
15	Caspase-independent cell death. Nature Medicine, 2005, 11, 725-730.	15.2	651
16	Suppression of Interleukin-33 Bioactivity through Proteolysis by Apoptotic Caspases. Immunity, 2009, 31, 84-98.	6.6	611
17	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 2009, 16, 1093-1107.	5.0	599
18	The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death and Differentiation, 2002, 9, 1031-1042.	5.0	572

#	Article	IF	CITATIONS
19	Proteolysis of Fodrin (Non-erythroid Spectrin) during Apoptosis. Journal of Biological Chemistry, 1995, 270, 6425-6428.	1.6	491
20	Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12815-12819.	3.3	475
21	The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends in Biochemical Sciences, 2001, 26, 390-397.	3.7	474
22	Chapter 9 The End of the (Cell) Line: Methods for the Study of Apoptosis in Vitro. Methods in Cell Biology, 1995, 46, 153-185.	0.5	459
23	FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity, 1995, 2, 341-351.	6.6	421
24	Serial killers: ordering caspase activation events in apoptosis. Cell Death and Differentiation, 1999, 6, 1067-1074.	5.0	411
25	Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO Journal, 2001, 20, 6627-6636.	3.5	386
26	Proteolytic Processing of Interleukin-1 Family Cytokines: Variations on a Common Theme. Immunity, 2015, 42, 991-1004.	6.6	385
27	The CASBAH: a searchable database of caspase substrates. Cell Death and Differentiation, 2007, 14, 641-650.	5.0	382
28	Inhibition of TNF-induced apoptosis by NF-κB. Trends in Cell Biology, 1998, 8, 107-111.	3.6	365
29	Oncogenic Ras-Induced Expression of Noxa and Beclin-1 Promotes Autophagic Cell Death and Limits Clonogenic Survival. Molecular Cell, 2011, 42, 23-35.	4.5	361
30	Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO Journal, 1997, 16, 4639-4649.	3.5	350
31	Dicing with death: dissecting the components of the apoptosis machinery. Trends in Biochemical Sciences, 1994, 19, 26-30.	3.7	343
32	Phosphatidylserine Externalization during CD95-induced Apoptosis of Cells and Cytoplasts Requires ICE/CED-3 Protease Activity. Journal of Biological Chemistry, 1996, 271, 28753-28756.	1.6	322
33	Granzymes in cancer and immunity. Cell Death and Differentiation, 2010, 17, 616-623.	5.0	295
34	To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death and Differentiation, 2019, 26, 395-408.	5.0	295
35	Caspase-activation pathways in apoptosis and immunity. Immunological Reviews, 2003, 193, 10-21.	2.8	292
36	Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines. Cell Reports, 2016, 14, 708-722.	2.9	259

#	Article	IF	CITATIONS
37	Granzyme B-Dependent Proteolysis Acts as a Switch to Enhance the Proinflammatory Activity of IL-1α. Molecular Cell, 2011, 44, 265-278.	4.5	247
38	Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO Journal, 2004, 23, 2134-2145.	3.5	241
39	Bax- or Bak-Induced Mitochondrial Fission Can Be Uncoupled from Cytochrome c Release. Molecular Cell, 2008, 31, 570-585.	4.5	234
40	Mechanisms of granule-dependent killing. Cell Death and Differentiation, 2008, 15, 251-262.	5.0	211
41	Cytotoxic and non ytotoxic roles of the CTL/NK protease granzyme B. Immunological Reviews, 2010, 235, 105-116.	2.8	201
42	Diverse Activators of the NLRP3 Inflammasome Promote IL-1β Secretion by Triggering Necrosis. Cell Reports, 2015, 11, 1535-1548.	2.9	201
43	Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion, 2010, 10, 640-648.	1.6	192
44	Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory "FADDosome― Complex upon TRAIL Stimulation. Molecular Cell, 2017, 65, 715-729.e5.	4.5	186
45	Fas/CD95-Induced Chemokines Can Serve as "Find-Me―Signals for Apoptotic Cells. Molecular Cell, 2013, 49, 1034-1048.	4.5	183
46	Caspase activation cascades in apoptosis. Biochemical Society Transactions, 2008, 36, 1-9.	1.6	182
47	Role for CED-9 and Egl-1 as Regulators of Mitochondrial Fission and Fusion Dynamics. Molecular Cell, 2006, 21, 761-773.	4.5	181
48	Bcl-2 Family Proteins Participate in Mitochondrial Quality Control by Regulating Parkin/PINK1-Dependent Mitophagy. Molecular Cell, 2014, 55, 451-466.	4.5	178
49	Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. Nature Protocols, 2009, 4, 1383-1395.	5.5	175
50	Emerging Role for Members of the Bcl-2 Family in Mitochondrial Morphogenesis. Molecular Cell, 2009, 36, 355-363.	4.5	174
51	A Perspective on Mammalian Caspases as Positive and Negative Regulators of Inflammation. Molecular Cell, 2012, 46, 387-397.	4.5	172
52	Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. Cell Death and Differentiation, 1998, 5, 298-306.	5.0	171
53	An Inflammatory Perspective on Necroptosis. Molecular Cell, 2017, 65, 965-973.	4.5	169
54	Ultraviolet B Irradiation of Human Leukaemia HL-60 Cells <i>in Vitro</i> Induces Apoptosis. International Journal of Radiation Biology, 1991, 59, 1001-1016.	1.0	166

#	Article	IF	CITATIONS
55	Caspase activation pathways: some recent progress. Cell Death and Differentiation, 2009, 16, 935-938.	5.0	163
56	Degradation of Retinoblastoma Protein in Tumor Necrosis Factor- and CD95-induced Cell Death. Journal of Biological Chemistry, 1997, 272, 9613-9616.	1.6	161
57	Extracellular Neutrophil Proteases Are Efficient Regulators of IL-1, IL-33, and IL-36 Cytokine Activity but Poor Effectors of Microbial Killing. Cell Reports, 2018, 22, 2937-2950.	2.9	150
58	CARD games in apoptosis and immunity. EMBO Reports, 2002, 3, 616-621.	2.0	148
59	Cell death and inflammation: the case for <scp>IL</scp> †family cytokines as the canonical <scp>DAMP</scp> s of the immune system. FEBS Journal, 2016, 283, 2599-2615.	2.2	147
60	Inflammatory outcomes of apoptosis, necrosis and necroptosis. Biological Chemistry, 2014, 395, 1163-1171.	1.2	146
61	Measuring apoptosis by microscopy and flow cytometry. Methods, 2013, 61, 90-97.	1.9	145
62	Apoptosis and cancer: the failure of controls on cell death and cell survival. Critical Reviews in Oncology/Hematology, 1995, 18, 137-153.	2.0	142
63	Apoptosis: Suicide, execution or murder?. Trends in Cell Biology, 1993, 3, 141-144.	3.6	130
64	Regulation of the Fas Apoptotic Cell Death Pathway by Abl. Journal of Biological Chemistry, 1995, 270, 22625-22631.	1.6	130
65	Parkin Sensitizes toward Apoptosis Induced by Mitochondrial Depolarization through Promoting Degradation of Mcl-1. Cell Reports, 2014, 9, 1538-1553.	2.9	126
66	Molecular Ordering of the Caspase Activation Cascade Initiated by the Cytotoxic T Lymphocyte/Natural Killer (CTL/NK) Protease Granzyme B. Journal of Biological Chemistry, 2005, 280, 4663-4673.	1.6	125
67	Destabilizing Influences in Apoptosis. Cell, 2002, 109, 793-796.	13.5	122
68	Human and murine granzyme B exhibit divergent substrate preferences. Journal of Cell Biology, 2007, 176, 435-444.	2.3	117
69	Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production. Cell Death and Differentiation, 2015, 22, 1313-1327.	5.0	116
70	Neutrophil extracellular traps can serve as platforms for processing and activation of <scp>IL</scp> â€1 family cytokines. FEBS Journal, 2017, 284, 1712-1725.	2.2	109
71	Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors. Molecular and Cellular Biology, 2017, 37, .	1.1	103
72	CARDINAL, a Novel Caspase Recruitment Domain Protein, Is an Inhibitor of Multiple NF-κB Activation Pathways. Journal of Biological Chemistry, 2001, 276, 44069-44077.	1.6	100

#	Article	IF	CITATIONS
73	Events in Apoptosis. Journal of Biological Chemistry, 1996, 271, 16260-16262.	1.6	99
74	Failure of Bcl-2 to block cytochrome c redistribution during TRAIL-induced apoptosis. FEBS Letters, 2000, 471, 93-98.	1.3	99
75	Regulation of Apoptotic Protease Activating Factor-1 Oligomerization and Apoptosis by the WD-40 Repeat Region. Journal of Biological Chemistry, 1999, 274, 20855-20860.	1.6	98
76	The Apoptosome Pathway to Caspase Activation in Primary Human Neutrophils Exhibits Dramatically Reduced Requirements for Cytochrome c. Journal of Experimental Medicine, 2003, 197, 625-632.	4.2	96
77	The killer and the executioner: how apoptosis controls malignancy. Current Opinion in Immunology, 1995, 7, 694-703.	2.4	95
78	Pro-apoptotic Proteins Released from the Mitochondria Regulate the Protein Composition and Caspase-processing Activity of the Native Apaf-1/Caspase-9 Apoptosome Complex. Journal of Biological Chemistry, 2004, 279, 19665-19682.	1.6	94
79	Programmed cell death (apoptosis) in lymphoid and myeloid cell lines during zinc deficiency. Clinical and Experimental Immunology, 2008, 83, 338-343.	1.1	94
80	Apoptosis as a goal of cancer therapy. Current Opinion in Oncology, 1994, 6, 616-621.	1.1	84
81	The Viral Nucleocapsid Protein of Transmissible Gastroenteritis Coronavirus (TGEV) Is Cleaved by Caspase-6 and -7 during TGEV-Induced Apoptosis. Journal of Virology, 2000, 74, 3975-3983.	1.5	83
82	Partial Cleavage of RasGAP by Caspases Is Required for Cell Survival in Mild Stress Conditions. Molecular and Cellular Biology, 2004, 24, 10425-10436.	1.1	80
83	PIAS-1 Is a Checkpoint Regulator Which Affects Exit from G 1 and G 2 by Sumoylation of p73. Molecular and Cellular Biology, 2004, 24, 10593-10610.	1.1	77
84	Portrait of a Killer: The Mitochondrial Apoptosome Emerges From the Shadows. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 19-26.	3.4	76
85	Iodine-124 labelled Annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. Applied Radiation and Isotopes, 2003, 58, 55-62.	0.7	75
86	The Cytotoxic Lymphocyte Protease, Granzyme B, Targets the Cytoskeleton and Perturbs Microtubule Polymerization Dynamics. Journal of Biological Chemistry, 2006, 281, 8118-8125.	1.6	75
87	An ERK-dependent pathway to Noxa expression regulates apoptosis by platinum-based chemotherapeutic drugs. Oncogene, 2010, 29, 6428-6441.	2.6	72
88	Caspase-1 Promiscuity Is Counterbalanced by Rapid Inactivation of Processed Enzyme. Journal of Biological Chemistry, 2011, 286, 32513-32524.	1.6	72
89	Expression and purification of recombinant annexin V for the detection of membrane alterations on apoptotic cells. Methods, 2008, 44, 235-240.	1.9	67
90	Fas and TRAIL â€~death receptors' as initiators of inflammation: Implications for cancer. Seminars in Cell and Developmental Biology, 2015, 39, 26-34.	2.3	67

#	Article	IF	CITATIONS
91	RIPK1 can function as an inhibitor rather than an initiator of RIPK3â€dependent necroptosis. FEBS Journal, 2014, 281, 4921-4934.	2.2	66
92	In vitro selectivity, in vivo biodistribution and tumour uptake of annexin V radiolabelled with a positron emitting radioisotope. British Journal of Cancer, 2003, 89, 1327-1333.	2.9	65
93	Smac/Diablo Antagonizes Ubiquitin Ligase Activity of Inhibitor of Apoptosis Proteins. Journal of Biological Chemistry, 2004, 279, 26906-26914.	1.6	64
94	Oncogenic B-RafV600E Inhibits Apoptosis and Promotes ERK-dependent Inactivation of Bad and Bim. Journal of Biological Chemistry, 2008, 283, 22128-22135.	1.6	64
95	Induction of apoptosis (programmed cell death) in tumour cell lines by widely diverging stimuli. Biochemical Society Transactions, 1990, 18, 343-345.	1.6	60
96	Caspase-dependent Inactivation of Proteasome Function during Programmed Cell Death in Drosophila and Man. Journal of Biological Chemistry, 2004, 279, 36923-36930.	1.6	59
97	Protein or RNA synthesis inhibition induces apoptosis of mature human CD4+ T cell blasts. Immunology Letters, 1993, 35, 125-134.	1.1	54
98	Caspases: cellular demolition experts. Biochemical Society Transactions, 2001, 29, 696-702.	1.6	54
99	iTAP, a novel iRhom interactor, controls TNF secretion by policing the stability of iRhom/TACE. ELife, 2018, 7, .	2.8	47
100	Downregulation of Bcr-Abl in K562 cells restores susceptibility to apoptosis: Characterization of the apoptotic death. Cell Death and Differentiation, 1997, 4, 95-104.	5.0	46
101	Bcl-2 family proteins and mitochondrial fission/fusion dynamics. Cellular and Molecular Life Sciences, 2010, 67, 1599-1606.	2.4	43
102	TRAIL Receptors Serve as Stress-Associated Molecular Patterns to Promote ER-Stress-Induced Inflammation. Developmental Cell, 2020, 52, 714-730.e5.	3.1	43
103	Mind Bomb Regulates Cell Death during TNF Signaling by Suppressing RIPK1's Cytotoxic Potential. Cell Reports, 2018, 23, 470-484.	2.9	42
104	Nucleophosmin Is Cleaved and Inactivated by the Cytotoxic Granule Protease Granzyme M during Natural Killer Cell-mediated Killing. Journal of Biological Chemistry, 2009, 284, 5137-5147.	1.6	41
105	Inhibitor of Apoptosis Proteins (IAPs) and Their Antagonists Regulate Spontaneous and Tumor Necrosis Factor (TNF)-induced Proinflammatory Cytokine and Chemokine Production. Journal of Biological Chemistry, 2013, 288, 4878-4890.	1.6	38
106	Mitochondrial membrane remodeling in apoptosis: an inside story. Cell Death and Differentiation, 2006, 13, 2007-2010.	5.0	37
107	Caspase Recruitment Domain-containing Protein 8 (CARD8) Negatively Regulates NOD2-mediated Signaling. Journal of Biological Chemistry, 2010, 285, 19921-19926.	1.6	37
108	Distinguishing between apoptosis, necrosis, necroptosis and other cell death modalities. Methods, 2013, 61, 87-89.	1.9	36

7

#	Article	IF	CITATIONS
109	Autosis: a new addition to the cell death tower of babel. Cell Death and Disease, 2014, 5, e1319-e1319.	2.7	35
110	Suppressing IL-36-driven inflammation using peptide pseudosubstrates for neutrophil proteases. Cell Death and Disease, 2018, 9, 378.	2.7	34
111	Establishing a Blueprint for CED-3-dependent Killing through Identification of Multiple Substrates for This Protease. Journal of Biological Chemistry, 2007, 282, 15011-15021.	1.6	32
112	A chromatin-independent role of Polycomb-like 1 to stabilize p53 and promote cellular quiescence. Genes and Development, 2015, 29, 2231-2243.	2.7	32
113	Measuring Apoptosis by Microscopy and Flow Cytometry. Current Protocols in Immunology, 2016, 112, 14.38.1-14.38.24.	3.6	29
114	Disruption of microtubules induces an endogenous suicide pathway in human leukaemia HL-60 cells. Cell Proliferation, 1990, 23, 545-559.	2.4	27
115	Interchain Proteolysis, in the Absence of a Dimerization Stimulus, Can Initiate Apoptosis-associated Caspase-8 Activation. Journal of Biological Chemistry, 2004, 279, 36916-36922.	1.6	27
116	Regulation of apoptosis by oncogenes. , 1996, 60, 33-38.		26
117	Autophagy in Multiple Myeloma: What Makes You Stronger Can Also Kill You. Cancer Cell, 2013, 23, 425-426.	7.7	25
118	Specific loss of microtubules in HL-60 cells leads to programmed cell death (apoptosis). Biochemical Society Transactions, 1990, 18, 299-301.	1.6	24
119	Apoptosomes: protease activation platforms to die from. Trends in Biochemical Sciences, 2006, 31, 243-247.	3.7	21
120	Proteomic and functional analysis identifies galectin-1 as a novel regulatory component of the cytotoxic granule machinery. Cell Death and Disease, 2017, 8, e3176-e3176.	2.7	19
121	The involvement of RNA and protein synthesis in programmed cell death (apoptosis) in human leukaemia HL-60 cells. Biochemical Society Transactions, 1990, 18, 634-636.	1.6	18
122	Oncogene-induced autophagy and the Goldilocks principle. Autophagy, 2011, 7, 922-923.	4.3	18
123	An Apollon vista of death and destruction. Nature Cell Biology, 2004, 6, 804-806.	4.6	17
124	TRAIL signaling promotes entosis in colorectal cancer. Journal of Cell Biology, 2021, 220, .	2.3	17
125	CELL BIOLOGY: Double Knockout Blow for Caspases. Science, 2006, 311, 785-786.	6.0	16
126	Commitment in apoptosis: slightly dead but mostly alive. Trends in Cell Biology, 2008, 18, 353-357.	3.6	16

#	Article	IF	CITATIONS
127	Production of biologically active ILâ€36 family cytokines through insertion of Nâ€ŧerminal caspase cleavage motifs. FEBS Open Bio, 2016, 6, 338-348.	1.0	14
128	Identification of smallâ€molecule elastase inhibitors as antagonists of ILâ€36 cytokine activation. FEBS Open Bio, 2018, 8, 751-763.	1.0	14
129	Bicaudal Is a Conserved Substrate for Drosophila and Mammalian Caspases and Is Essential for Cell Survival. PLoS ONE, 2009, 4, e5055.	1.1	13
130	Proteases, proteasomes and apoptosis: breaking Ub is hard to do. Cell Death and Differentiation, 2005, 12, 1213-1217.	5.0	12
131	Opening the Cellular Poison Cabinet. Science, 2010, 330, 1330-1331.	6.0	10
132	lL-1 family cytokines serve as 'activity recognition receptors' for aberrant protease activity indicative of danger. Cytokine, 2022, 157, 155935.	1.4	10
133	Search for Drosophila caspases bears fruit: STRICA enters the fray. Cell Death and Differentiation, 2001, 8, 319-323.	5.0	9
134	Apoptosis: Calling Time on Apoptosome Activity. Science Signaling, 2009, 2, pe62.	1.6	9
135	Mitochondrial Fusion: Bax to the Fussure. Developmental Cell, 2011, 20, 142-143.	3.1	9
136	Defying death: showing Bcl-2 the way home. Nature Cell Biology, 2003, 5, 9-11.	4.6	8
137	Cell Stress-Associated Caspase Activation: Intrinsically Complex?. Science Signaling, 2003, 2003, pe11-pe11.	1.6	8
138	CARDINAL Roles in Apoptosis and NFκB Activation. Vitamins and Hormones, 2004, 67, 133-147.	0.7	8
139	Writing a successful fellowship or grant application. FEBS Journal, 2017, 284, 3771-3777.	2.2	7
140	A Duel to the Death: Activated Caspases Meet Their Substrates. Sepsis, 1998, 2, 21-29.	0.5	6
141	Analysis of apoptosis in cell-free systems. Methods, 2008, 44, 273-279.	1.9	6
142	Greasing the Path to BAX/BAK Activation. Cell, 2012, 148, 845-846.	13.5	6
143	Apoptosis During HIV Infection. Advances in Experimental Medicine and Biology, 1995, , 129-138.	0.8	6
144	Regulation of caspase activation in apoptosis: implications for transformation and drug resistance. ,		5

¹⁴⁴ 1998, 27, 309-320.

#	Article	IF	CITATIONS
145	Chapter Seventeen Twoâ€Dimensional Gelâ€Based Analysis of the Demolition Phase of Apoptosis. Methods in Enzymology, 2008, 442, 343-354.	0.4	5
146	Getting a gRIP on Flu by Casting the DAI. Cell Host and Microbe, 2016, 20, 552-554.	5.1	4
147	The FEBS Journal in 2020: Open Access and quality versus quantity publishing. FEBS Journal, 2020, 287, 4-10.	2.2	4
148	Cytotoxic Lymphocyte Killing Enters the Ice Age. Advances in Experimental Medicine and Biology, 1996, 406, 29-37.	0.8	4
149	The <scp>FEBS</scp> Journal: passing the editorial baton. FEBS Journal, 2014, 281, 1-2.	2.2	3
150	IL-1α and IL-36 Family Cytokines Can Undergo Processing and Activation by Diverse Allergen-Associated Proteases. Frontiers in Immunology, 0, 13, .	2.2	3
151	c-Myc: Where Death and Division Collide. Cell Cycle, 2004, 3, 454-457.	1.3	2
152	Improvement by death in immunity. Cell Death and Differentiation, 2008, 15, 221-222.	5.0	2
153	Words of Advice: for what it's worth, our tuppenceworth. FEBS Journal, 2016, 283, 3856-3856.	2.2	2
154	Caspases: Structure, Activation Pathways, and Substrates. , 0, , 3-12.		2
155	Competition for growth factors: a lot more death with a little less Aktion. Cell Death and Differentiation, 2013, 20, 1291-1292.	5.0	1
156	John Hardy is the <scp>UK</scp> 's first Breakthrough Prize laureate. FEBS Journal, 2015, 282, 4641-4642.	2.2	1
157	<i>The <scp>FEBS</scp> Journal</i> in 2015: onwards and upwards. FEBS Journal, 2015, 282, 1-3.	2.2	1
158	<i>The <scp>FEBS</scp> Journal</i> in 2017: quality is its own reward. FEBS Journal, 2017, 284, 4-6.	2.2	1
159	<i>The <scp>FEBS</scp> Journal</i> in 2018 – putting a bit of color in your life, and your figures. FEBS Journal, 2018, 285, 4-7.	2.2	1
160	Identification and characterization of a low molecular mass cell surface antigen which is deposited extracellularly by differentiating U-937 cells. Biochemical Society Transactions, 1989, 17, 418-419.	1.6	0
161	Getting the measure of apoptosis. Methods, 2008, 44, 197-199.	1.9	0
162	Staying Alive: Defensive Strategies in the BCL-2 Family Playbook. Molecular Cell, 2011, 44, 509-510.	4.5	0

#	Article	IF	CITATIONS
163	<i>The <scp>FEBS</scp> Journal</i> in 2016: read, reflect and don't feed the wolves. FEBS Journal, 2016, 283, 4-8.	2.2	0
164	50Âyears of <i>The <scp>FEBS</scp> Journal</i> : looking back as well as ahead. FEBS Journal, 2017, 284, 4162-4171.	2.2	0
165	A Guide to â€~A Guide to….' articles, some thoughts on impact, and why you really should publish with <i>The <scp>FEBS</scp> Journal</i> . FEBS Journal, 2018, 285, 2364-2366.	2.2	0
166	How to prepare and deliver a great talk. FEBS Journal, 2019, 286, 39-45.	2.2	0
167	<i>The <scp>FEBS</scp> Journal</i> in 2019: ensuring that casks of vintage wine remain unspoiled. FEBS Journal, 2019, 286, 4-7.	2.2	0
168	The FEBS Journal in 2021: a sharp reminder that science really matters. FEBS Journal, 2021, 288, 4-9.	2.2	0
169	Dr. Alexander Wlodawer—celebrating five decades of service to the structural biology community. FEBS Journal, 2021, 288, 4160-4164.	2.2	0
170	Dan S. Tawfik (1955 to 2021). FEBS Journal, 2021, 288, 3878-3879.	2.2	0
171	Caspases. , 2003, , 3-12.		0
172	Human and murine granzyme B exhibit divergent substrate preferences. Journal of Experimental Medicine, 2007, 204, i4-i4.	4.2	0
173	Regulation of caspase activation in apoptosis: implications for transformation and drug resistance. , 1998, , 309-320.		0
174	The FEBS Journal in 2022: trust the science and treasure the data. FEBS Journal, 2022, 289, 4-8.	2.2	0
175	Remembering apoptosis pioneer Andrew Wyllie (1944–2022). FEBS Journal, 0, , .	2.2	0