Gergely Kali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6481433/publications.pdf Version: 2024-02-01

GEDGELV KALL

#	Article	IF	CITATIONS
1	Horseradish Peroxidase as a Catalyst for Atom Transfer Radical Polymerization. Macromolecular Rapid Communications, 2011, 32, 1710-1715.	3.9	127
2	Hemoglobin and Red Blood Cells Catalyze Atom Transfer Radical Polymerization. Biomacromolecules, 2013, 14, 2703-2712.	5.4	89
3	Synthesis and Characterization of Anionic Amphiphilic Model Conetworks Based on Methacrylic Acid and Methyl Methacrylate:Â Effects of Composition and Architecture. Macromolecules, 2007, 40, 2192-2200.	4.8	84
4	Thermally Responsive Amphiphilic Conetworks and Gels Based on Poly(<i>N</i> -isopropylacrylamide) and Polyisobutylene. Macromolecules, 2013, 46, 5337-5344.	4.8	80
5	Synthesis and Characterization of Anionic Amphiphilic Model Conetworks of 2-Butyl-1-Octyl-Methacrylate and Methacrylic Acid:  Effects of Polymer Composition and Architecture. Langmuir, 2007, 23, 10746-10755.	3.5	74
6	Poly(<i>N</i> -vinylimidazole)- <i>l</i> -Poly(tetrahydrofuran) Amphiphilic Conetworks and Gels: Synthesis, Characterization, Thermal and Swelling Behavior. Macromolecules, 2011, 44, 4496-4502.	4.8	70
7	Controlled Radical Polymerization of Myrcene in Bulk: Mapping the Effect of Conditions on the System. ACS Sustainable Chemistry and Engineering, 2017, 5, 10084-10092.	6.7	64
8	Anionic amphiphilic endâ€linked conetworks by the combination of quasiliving carbocationic and group transfer polymerizations. Journal of Polymer Science Part A, 2009, 47, 4289-4301.	2.3	63
9	Terpene Based Elastomers: Synthesis, Properties, and Applications. Processes, 2020, 8, 553.	2.8	55
10	Bio-based polymyrcene with highly ordered structure via solvent free controlled radical polymerization. European Polymer Journal, 2015, 73, 363-373.	5.4	54
11	One Pot Synthesis of a Polyisoprene Polyrotaxane and Conversion to a Slideâ€Ring Gel. Macromolecular Rapid Communications, 2016, 37, 67-72.	3.9	33
12	A New Synthetic Method for the Preparation of Star-Shaped Polyisobutylene with Hyperbranched Polystyrene Core. Macromolecular Chemistry and Physics, 2007, 208, 1388-1393.	2.2	23
13	Thiolated pectins: In vitro and ex vivo evaluation of three generations of thiomers. Acta Biomaterialia, 2021, 135, 139-149.	8.3	23
14	Synthesis of Well-Defined Phthalimide Monofunctional Hyperbranched Polyglycerols and Its Transformation to Various Conjugation Relevant Functionalities. Macromolecules, 2017, 50, 3078-3088.	4.8	21
15	Poly(methacrylic acid)â€ <i>l</i> â€Polyisobutylene Amphiphilic Conetworks by Using an Ethoxyethylâ€Protected Comonomer: Synthesis, Protecting Group Removal in the Crossâ€Linked State, and Characterization. Macromolecular Chemistry and Physics, 2015, 216, 605-613.	2.2	20
16	Nanophasic morphologies as a function of the composition and molecular weight of the macromolecular cross-linker in poly(N-vinylimidazole)-l-poly(tetrahydrofuran) amphiphilic conetworks: bicontinuous domain structure in broad composition ranges. RSC Advances, 2017, 7, 6827-6834.	3.6	20
17	Extreme difference of polarities in a single material: Poly(acrylic acid)â€based amphiphilic conetworks with polyisobutylene crossâ€linker. Journal of Polymer Science Part A, 2017, 55, 1818-1821.	2.3	15
18	Synthesis and evaluation of sulfosuccinate-based surfactants as counterions for hydrophobic ion pairing. Acta Biomaterialia, 2022, 144, 54-66.	8.3	14

GERGELY KALI

#	Article	IF	CITATIONS
19	Rotaxanation of Polyisoprene to Render it Soluble in Water. Macromolecules, 2017, 50, 1312-1318.	4.8	13
20	Polyaminated pullulan, a new biodegradable and cationic pullulan derivative for mucosal drug delivery. Carbohydrate Polymers, 2022, 282, 119143.	10.2	13
21	Emerging technologies to increase gastrointestinal transit times of drug delivery systems. Journal of Controlled Release, 2022, 346, 289-299.	9.9	13
22	Star and Hyperbranched Polyisobutylenes via Terminally Reactive Polyisobutyleneâ€₽olystyrene Block Copolymers. Macromolecular Symposia, 2013, 323, 37-41.	0.7	12
23	Noncollapsing polyelectrolyte conetwork gels in physiologically relevant salt solutions. European Polymer Journal, 2016, 84, 668-674.	5.4	11
24	Green Engineered Polymers: Solvent Free, Roomâ€Temperature Polymerization of Monomer From a Renewable Resource, Without Utilizing Initiator ChemistrySelect, 2019, 4, 3495-3499.	1.5	10
25	ATRPases: Using Nature's Catalysts in Atom Transfer Radical Polymerizations. ACS Symposium Series, 2012, , 171-181.	0.5	8
26	One-pot synthesis of block-copolyrotaxanes through controlled <i>rotaxa</i> -polymerization. Beilstein Journal of Organic Chemistry, 2017, 13, 1310-1315.	2.2	7
27	ATRPases: Enzymes as Catalysts for Atom Transfer Radical Polymerization. Chimia, 2012, 66, 66.	0.6	6
28	Free- and reversible deactivation radical (co)polymerization of isobutylene in water under environmentally benign conditions. European Polymer Journal, 2021, 147, 110336.	5.4	4
29	Synthesis of Poly(Methyl Methacrylate)-Based Polyrotaxane via Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Macro Letters, 2020, 9, 1853-1857.	4.8	3
30	Structural Characterization of Glassy and Rubbery Model Anionic Amphiphilic Polymer Conetworks. ACS Symposium Series, 2008, , 286-302.	0.5	2
31	In Situ Terminal Functionalization of Polystyrene Obtained by Quasiliving ATRP and Subsequent Derivatizations. ACS Symposium Series, 2018, , 281-295.	0.5	1
32	New, Aqueous Radical (Co)Polymerization of Olefins at Low Temperature and Pressure. Processes, 2020, 8, 688.	2.8	0
33	Special Issue "Green Synthesis Processes of Polymers & Compositesâ€: Processes, 2021, 9, 628.	2.8	0