Zofia RogÃ³Å¹⁄4

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6481268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N-Acetylcysteine and Aripiprazole Improve Social Behavior and Cognition and Modulate Brain BDNF Levels in a Rat Model of Schizophrenia. International Journal of Molecular Sciences, 2022, 23, 2125.	1.8	10
2	The Effect of Glutathione Deficit During Early Postnatal Brain Development on the Prepulse Inhibition and Monoamine Levels in Brain Structures of Adult Sprague–Dawley Rats. Neurotoxicity Research, 2022, , 1.	1.3	0
3	Glutathione Deficiency during Early Postnatal Development Causes Schizophrenia-Like Symptoms and a Reduction in BDNF Levels in the Cortex and Hippocampus of Adult Sprague–Dawley Rats. International Journal of Molecular Sciences, 2021, 22, 6171.	1.8	13
4	Impact of repeated co-treatment with escitalopram and aripiprazole on the schizophrenia-like behaviors and BDNF mRNA expression in the adult Sprague–Dawley rats exposed to glutathione deficit during early postnatal development of the brain. Pharmacological Reports, 2021, 73, 1712-1723.	1.5	3
5	Effect of combined treatment with aripiprazole and antidepressants on the MK-801-induced deficits in recognition memory in novel recognition test and on the release of monoamines in the rat frontal cortex. Behavioural Brain Research, 2020, 393, 112769.	1.2	15
6	Alterations in the Antioxidant Enzyme Activities in the Neurodevelopmental Rat Model of Schizophrenia Induced by Glutathione Deficiency during Early Postnatal Life. Antioxidants, 2020, 9, 538.	2.2	19
7	Co-treatment with antidepressants and aripiprazole reversed the MK-801-induced some negative symptoms of schizophrenia in rats. Pharmacological Reports, 2019, 71, 768-773.	1.5	10
8	Glutathione Deficiency and Alterations in the Sulfur Amino Acid Homeostasis during Early Postnatal Development as Potential Triggering Factors for Schizophrenia-Like Behavior in Adult Rats. Molecules, 2019, 24, 4253.	1.7	15
9	Combined treatment with aripiprazole and antidepressants reversed some MK-801-induced schizophrenia-like symptoms in mice. Pharmacological Reports, 2018, 70, 623-630.	1.5	9
10	Stimulatory effect of desipramine on lung metastases of adenocarcinoma MADB 106 in stress highly-sensitive and stress non-reactive rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 279-290.	2.5	3
11	The effect of chronic co-treatment with risperidone and novel antidepressant drugs on the dopamine and serotonin levels in the rats frontal cortex. Pharmacological Reports, 2018, 70, 1023-1031.	1.5	12
12	Repeated co-treatment with antidepressants and risperidone increases BDNF mRNA and protein levels in rats. Pharmacological Reports, 2017, 69, 885-893.	1.5	15
13	Depressive-like effect of prenatal exposure to DDT involves global DNA hypomethylation and impairment of GPER1/ESR1 protein levels but not ESR2 and AHR/ARNT signaling. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 94-109.	1.2	26
14	Risperidone and escitalopram co-administration: A potential treatment of schizophrenia symptoms with less side effects. Pharmacological Reports, 2017, 69, 13-21.	1.5	8
15	Neurotoxic Effects of 5-MeO-DIPT: A Psychoactive Tryptamine Derivative in Rats. Neurotoxicity Research, 2016, 30, 606-619.	1.3	22
16	The effect of combined treatment with escitalopram and risperidone on the MK-801-induced changes in the object recognition test in mice. Pharmacological Reports, 2016, 68, 116-120.	1.5	14
17	The effect of combined treatment with risperidone and antidepressants on the MK-801-induced deficits in the social interaction test in rats. Pharmacological Reports, 2015, 67, 1183-1187.	1.5	17
18	The effect of risperidone on the mirtazapine-induced changes in extracellular monoamines in the rat frontal cortex. Pharmacological Reports, 2014, 66, 984-990.	1.5	5

Zofia Rogóż

#	Article	IF	CITATIONS
19	Effect of combined treatment with mirtazapine and risperidone on the MK-801-induced changes in the object recognition test in mice. Pharmacological Reports, 2013, 65, 1401-1406.	1.5	23
20	Combined treatment with atypical antipsychotics and antidepressants in treatment-resistant depression: preclinical and clinical efficacy. Pharmacological Reports, 2013, 65, 1535-1544.	1.5	36
21	Effect of risperidone on the fluoxetine-induced changes in extracellular dopamine, serotonin and noradrenaline in the rat frontal cortex. Pharmacological Reports, 2013, 65, 1144-1151.	1.5	21
22	Effect of co-treatment with fluoxetine or mirtazapine and risperidone on the active behaviors and plasma corticosterone concentration in rats subjected to the forced swim test. Pharmacological Reports, 2012, 64, 1391-1399.	1.5	29
23	Effects of co-administration of fluoxetine and risperidone on properties of peritoneal and pleural macrophages in rats subjected to the forced swimming test. Pharmacological Reports, 2012, 64, 1368-1380.	1.5	14
24	Effect of co-treatment with mirtazapine and risperidone in animal models of the positive symptoms of schizophrenia in mice. Pharmacological Reports, 2012, 64, 1567-1572.	1.5	20
25	Anxiolytic-like effects of olanzapine, risperidone and fluoxetine in the elevated plus-maze test in rats. Pharmacological Reports, 2011, 63, 1547-1552.	1.5	38
26	Enhancement of the anti-immobility action of antidepressants by risperidone in the forced swimming test in mice. Pharmacological Reports, 2011, 63, 1533-1538.	1.5	14
27	Stimulatory effect of antidepressant drug pretreatment on progression of B16F10 melanoma in high-active male and female C57BL/6J mice. Journal of Neuroimmunology, 2011, 240-241, 34-44.	1.1	19
28	Effect of metyrapone on the fluoxetine-induced change in extracellular dopamine, serotonin and their metabolites in the rat frontal cortex. Pharmacological Reports, 2010, 62, 1015-1022.	1.5	10
29	Effects of co-treatment with mirtazapine and low doses of risperidone on immobility time in the forced swimming test in mice. Pharmacological Reports, 2010, 62, 1191-6.	1.5	5
30	Inhibitory effects of amantadine on the production of pro-inflammatory cytokines by stimulated in vitro human blood. Pharmacological Reports, 2009, 61, 1105-1112.	1.5	27
31	Potentiation of the antidepressant-like effect of desipramine or reboxetine by metyrapone in the forced swimming test in rats. Pharmacological Reports, 2009, 61, 1173-1178.	1.5	14
32	Antidepressant-like effect of PRE-084, a selective σ1 receptor agonist, in Albino Swiss and C57BL/6J mice. Pharmacological Reports, 2009, 61, 1179-1183.	1.5	27
33	Effect of repeated co-treatment with fluoxetine and amantadine on the behavioral reactivity of the central dopamine and serotonin system in rats. Pharmacological Reports, 2009, 61, 924-929.	1.5	4
34	Concomitant administration of fluoxetine and amantadine modulates the activity of peritoneal macrophages of rats subjected to a forced swimming test. Pharmacological Reports, 2009, 61, 1069-1077.	1.5	21
35	Effect of co-administration of fluoxetine and amantadine on immunoendocrine parameters in rats subjected to a forced swimming test. Pharmacological Reports, 2009, 61, 1050-1060.	1.5	20
36	Repeated co-treatment with fluoxetine and amantadine induces brain-derived neurotrophic factor gene expression in rats. Pharmacological Reports, 2008, 60, 817-26.	1.5	23

Zofia Rogóż

#	Article	IF	CITATIONS
37	Effects of co-administration of fluoxetine or tianeptine with metyrapone on immobility time and plasma corticosterone concentration in rats subjected to the forced swim test. Pharmacological Reports, 2008, 60, 880-8.	1.5	13
38	Effect of repeated co-treatment with imipramine and metyrapone on the behavioral reactivity of the central serotonin, dopamine and alpha 1-adrenergic systems in rats. Pharmacological Reports, 2007, 59, 588-94.	1.5	5
39	Antidepressant-like effect of combined treatment with selective sigma receptor agonists and a 5-HT1A receptor agonist in the forced swimming test in rats. Pharmacological Reports, 2007, 59, 773-7.	1.5	12
40	Amantadine as an additive treatment in patients suffering from drug-resistant unipolar depression. Pharmacological Reports, 2007, 59, 778-84.	1.5	34
41	Effect of amantadine and imipramine on immunological parameters of rats subjected to a forced swimming test. International Journal of Neuropsychopharmacology, 2006, 9, 297.	1.0	21
42	Effect of acute and repeated treatment with mirtazapine on the immunity of noradrenaline transporter knockout C57BL/6J mice. Pharmacology Biochemistry and Behavior, 2006, 85, 813-819.	1.3	17
43	Effect of Antidepressant Drugs in Mice Lacking the Norepinephrine Transporter. Neuropsychopharmacology, 2006, 31, 2424-2432.	2.8	64
44	Mechanism of synergistic action following co-treatment with pramipexole and fluoxetine or sertraline in the forced swimming test in rats. Pharmacological Reports, 2006, 58, 493-500.	1.5	30
45	Combined treatment with imipramine and metyrapone induces hippocampal and cortical brain-derived neurotrophic factor gene expression in rats. Pharmacological Reports, 2005, 57, 840-4.	1.5	25
46	Synergistic effect of imipramine and amantadine in the forced swimming test in rats. Behavioral and pharmacokinetic studies. Polish Journal of Pharmacology, 2004, 56, 179-85.	0.3	23
47	Effects of joint administration of imipramine and amantadine in patients with drug-resistant unipolar depression. Polish Journal of Pharmacology, 2004, 56, 735-42.	0.3	9
48	Effect of metyrapone supplementation on imipramine therapy in patients with treatment-resistant unipolar depression. Polish Journal of Pharmacology, 2004, 56, 849-55.	0.3	15
49	Anxiolytic-like effects of preferential dopamine D3 receptor agonists in an animal model. Polish Journal of Pharmacology, 2003, 55, 449-54.	0.3	10
50	Effects of combined treatment with imipramine and metyrapone in the forced swimming test in rats. Behavioral and pharmacokinetic studies. Polish Journal of Pharmacology, 2003, 55, 993-9.	0.3	7
51	Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacology, 2002, 42, 1024-1030.	2.0	164
52	Effect of repeated treatment with mirtazapine on the central dopaminergic D2/D3 receptors. Polish Journal of Pharmacology, 2002, 54, 381-9.	0.3	5
53	Effect of repeated treatment with reboxetine on the central alpha 1-adrenergic and dopaminergic receptors. Polish Journal of Pharmacology, 2002, 54, 593-603.	0.3	8
54	Some behavioural effects of antidepressant drugs are time-dependent. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2001, 25, 373-393.	2.5	6

Zofia Rogóż

#	Article	IF	CITATIONS
55	Effect of antidepressant drugs administered repeatedly on the dopamine D3 receptors in the rat brain. European Journal of Pharmacology, 1998, 351, 31-37.	1.7	71
56	The behavioural effects of pramipexole, a novel dopamine receptor agonist. European Journal of Pharmacology, 1997, 324, 31-37.	1.7	75
57	Antidepressant drugs given repeatedly change the binding of the dopamine D2 receptor agonist, [3H]N-0437, to dopamine D2 receptors in the rat brain. European Journal of Pharmacology, 1996, 304, 49-54.	1.7	46
58	Neuropharmacological profile of EMD 57445, a σ receptor ligand with potential antipsychotic activity. European Journal of Pharmacology, 1996, 315, 235-243.	1.7	23
59	Reserpine-induced locomotor stimulation in mice chronically treated with typical and atypical and atypical antidepressants. European Journal of Pharmacology, 1983, 87, 469-474.	1.7	19
60	Fluvoxamine, a new antidepressant drug, fails to show antiserotonin activity. European Journal of Pharmacology, 1982, 81, 287-292.	1.7	27
61	Some central effects of impromidine, a potent agonist of histamine H2 receptors. Neuropharmacology, 1980, 19, 947-950.	2.0	6