
Jeannine M Coburn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/648105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HepaRG Maturation in Silk Fibroin Scaffolds: Toward Developing a 3D <i>In Vitro</i> Liver Model. ACS Biomaterials Science and Engineering, 2023, 9, 3885-3899.	2.6	8
2	Fabrication Methods and Form Factors of Gellan Gum-Based Materials for Drug Delivery and Anti-Cancer Applications. ACS Biomaterials Science and Engineering, 2023, 9, 3832-3842.	2.6	12
3	Development of a stacked, porous silk scaffold neuroblastoma model for investigating spatial differences in cell and drug responsiveness. Biomaterials Science, 2021, 9, 1272-1290.	2.6	0
4	Enhancing sustained-release local therapy: Single versus dual chemotherapy for the treatment of neuroblastoma. Surgery, 2020, 167, 969-977.	1.0	4
5	In Vitro Biocompatibility of Decellularized Cultured Plant Cell-Derived Matrices. ACS Biomaterials Science and Engineering, 2020, 6, 822-832.	2.6	25
6	Three-Dimensional, Scaffolded Tumor Model to Study Cell-Driven Microenvironment Effects and Therapeutic Responses. ACS Biomaterials Science and Engineering, 2019, 5, 6742-6754.	2.6	9
7	Bioengineered <i>in Vitro</i> Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis. ACS Biomaterials Science and Engineering, 2019, 5, 2417-2429.	2.6	40
8	Controlling methacryloyl substitution of chondroitin sulfate: injectable hydrogels with tunable long-term drug release profiles. Journal of Materials Chemistry B, 2019, 7, 2151-2161.	2.9	45
9	Developing preclinical models of neuroblastoma: driving therapeutic testing. BMC Biomedical Engineering, 2019, 1, 33.	1.7	14
10	Avidin Adsorption to Silk Fibroin Films as a Facile Method for Functionalization. Biomacromolecules, 2018, 19, 3705-3713.	2.6	19
11	Stabilization and Sustained Release of HIV Inhibitors by Encapsulation in Silk Fibroin Disks. ACS Biomaterials Science and Engineering, 2017, 3, 1654-1665.	2.6	19
12	Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design. Acta Biomaterialia, 2017, 63, 76-84.	4.1	79
13	Manipulation of variables in local controlled release vincristine treatment in neuroblastoma. Journal of Pediatric Surgery, 2017, 52, 2061-2065.	0.8	12
14	Enzyme-catalyzed functionalization of poly(L-lactic acid) for drug delivery applications. Process Biochemistry, 2017, 59, 77-83.	1.8	42
15	Implantable chemotherapy-loaded silk protein materials for neuroblastoma treatment. International Journal of Cancer, 2017, 140, 726-735.	2.3	35
16	Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration. Advanced Healthcare Materials, 2017, 6, 1600762.	3.9	46
17	Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses. Advanced Materials, 2016, 28, 2417-2420.	11.1	132
18	Bio-functionalized silk hydrogel microfluidic systems, Biomaterials, 2016, 93, 60-70,	5.7	101

JEANNINE M COBURN

#	Article	IF	CITATIONS
19	Sustained delivery of vincristine inside an orthotopic mouse sarcoma model decreases tumor growth. Journal of Pediatric Surgery, 2016, 51, 2058-2062.	0.8	12
20	Immuno-Informed 3D Silk Biomaterials for Tailoring Biological Responses. ACS Applied Materials & Interfaces, 2016, 8, 29310-29322.	4.0	34
21	Phenol red-silk tyrosine cross-linked hydrogels. Acta Biomaterialia, 2016, 42, 102-113.	4.1	21
22	Local delivery of a carbohydrate analog for reducing arthritic inflammation and rebuilding cartilage. Biomaterials, 2016, 83, 93-101.	5.7	22
23	3D Laser Ablation of Biocompatible Silk Fibroin Hydrogels for Biomedical Applications. , 2015, , .		Ο
24	Focal therapy of neuroblastoma using silk films to deliver kinase and chemotherapeutic agents in vivo. Acta Biomaterialia, 2015, 20, 32-38.	4.1	50
25	Engineering Biomaterial–Drug Conjugates for Local and Sustained Chemotherapeutic Delivery. Bioconjugate Chemistry, 2015, 26, 1212-1223.	1.8	29
26	Modulation of vincristine and doxorubicin binding and release from silk films. Journal of Controlled Release, 2015, 220, 229-238.	4.8	59
27	Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12052-12057.	3.3	122
28	Tissue engineering strategies to study cartilage development, degeneration and regeneration. Advanced Drug Delivery Reviews, 2015, 84, 107-122.	6.6	134
29	Impact of silk biomaterial structure on proteolysis. Acta Biomaterialia, 2015, 11, 212-221.	4.1	142
30	Tissue Extracellular Matrix Nanoparticle Presentation in Electrospun Nanofibers. BioMed Research International, 2014, 2014, 1-13.	0.9	31
31	Intraâ€articular delivery of glucosamine for treatment of experimental osteoarthritis created by a medial meniscectomy in a rat model. Journal of Orthopaedic Research, 2014, 32, 302-309.	1.2	16
32	Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model. British Journal of Cancer, 2014, 111, 708-715.	2.9	60
33	Short-Chain Fatty Acid-Modified Hexosamine for Tissue-Engineering Osteoarthritic Cartilage. Tissue Engineering - Part A, 2013, 19, 2035-2044.	1.6	13
34	Human Cartilage Repair with a Photoreactive Adhesive-Hydrogel Composite. Science Translational Medicine, 2013, 5, 167ra6.	5.8	270
35	Differential Response of Chondrocytes and Chondrogenic-Induced Mesenchymal Stem Cells to C1-OH Tributanoylated N-Acetylhexosamines. PLoS ONE, 2013, 8, e58899.	1.1	12
36	Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10012-10017.	3.3	189

JEANNINE M COBURN

#	Article	IF	CITATIONS
37	Photoactivated Composite Biomaterial for Soft Tissue Restoration in Rodents and in Humans. Science Translational Medicine, 2011, 3, 93ra67.	5.8	88
38	Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Structures and Systems, 2011, 7, 213-222.	1.9	119
39	Size of the embryoid body influences chondrogenesis of mouse embryonic stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 499-506.	1.3	52
40	Novel drug release profiles from micellar solutions of PLA–PEO–PLA triblock copolymers. Journal of Controlled Release, 2006, 112, 64-71.	4.8	103