
Jeannine M Coburn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/648105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human Cartilage Repair with a Photoreactive Adhesive-Hydrogel Composite. Science Translational Medicine, 2013, 5, 167ra6.	12.4	270
2	Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10012-10017.	7.1	189
3	Impact of silk biomaterial structure on proteolysis. Acta Biomaterialia, 2015, 11, 212-221.	8.3	142
4	Tissue engineering strategies to study cartilage development, degeneration and regeneration. Advanced Drug Delivery Reviews, 2015, 84, 107-122.	13.7	134
5	Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses. Advanced Materials, 2016, 28, 2417-2420.	21.0	132
6	Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12052-12057.	7.1	122
7	Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Structures and Systems, 2011, 7, 213-222.	1.9	119
8	Novel drug release profiles from micellar solutions of PLA–PEO–PLA triblock copolymers. Journal of Controlled Release, 2006, 112, 64-71.	9.9	103
9	Bio-functionalized silk hydrogel microfluidic systems. Biomaterials, 2016, 93, 60-70.	11.4	101
10	Photoactivated Composite Biomaterial for Soft Tissue Restoration in Rodents and in Humans. Science Translational Medicine, 2011, 3, 93ra67.	12.4	88
11	Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design. Acta Biomaterialia, 2017, 63, 76-84.	8.3	79
12	Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model. British Journal of Cancer, 2014, 111, 708-715.	6.4	60
13	Modulation of vincristine and doxorubicin binding and release from silk films. Journal of Controlled Release, 2015, 220, 229-238.	9.9	59
14	Size of the embryoid body influences chondrogenesis of mouse embryonic stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 499-506.	2.7	52
15	Focal therapy of neuroblastoma using silk films to deliver kinase and chemotherapeutic agents in vivo. Acta Biomaterialia, 2015, 20, 32-38.	8.3	50
16	Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration. Advanced Healthcare Materials, 2017, 6, 1600762.	7.6	46
17	Controlling methacryloyl substitution of chondroitin sulfate: injectable hydrogels with tunable long-term drug release profiles. Journal of Materials Chemistry B, 2019, 7, 2151-2161.	5.8	45
18	Enzyme-catalyzed functionalization of poly(L-lactic acid) for drug delivery applications. Process Biochemistry, 2017, 59, 77-83.	3.7	42

JEANNINE M COBURN

#	Article	IF	CITATIONS
19	Bioengineered <i>in Vitro</i> Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis. ACS Biomaterials Science and Engineering, 2019, 5, 2417-2429.	5.2	40
20	Implantable chemotherapy-loaded silk protein materials for neuroblastoma treatment. International Journal of Cancer, 2017, 140, 726-735.	5.1	35
21	Immuno-Informed 3D Silk Biomaterials for Tailoring Biological Responses. ACS Applied Materials & Interfaces, 2016, 8, 29310-29322.	8.0	34
22	Tissue Extracellular Matrix Nanoparticle Presentation in Electrospun Nanofibers. BioMed Research International, 2014, 2014, 1-13.	1.9	31
23	Engineering Biomaterial–Drug Conjugates for Local and Sustained Chemotherapeutic Delivery. Bioconjugate Chemistry, 2015, 26, 1212-1223.	3.6	29
24	In Vitro Biocompatibility of Decellularized Cultured Plant Cell-Derived Matrices. ACS Biomaterials Science and Engineering, 2020, 6, 822-832.	5.2	25
25	Local delivery of a carbohydrate analog for reducing arthritic inflammation and rebuilding cartilage. Biomaterials, 2016, 83, 93-101.	11.4	22
26	Phenol red-silk tyrosine cross-linked hydrogels. Acta Biomaterialia, 2016, 42, 102-113.	8.3	21
27	Stabilization and Sustained Release of HIV Inhibitors by Encapsulation in Silk Fibroin Disks. ACS Biomaterials Science and Engineering, 2017, 3, 1654-1665.	5.2	19
28	Avidin Adsorption to Silk Fibroin Films as a Facile Method for Functionalization. Biomacromolecules, 2018, 19, 3705-3713.	5.4	19
29	Intraâ€articular delivery of glucosamine for treatment of experimental osteoarthritis created by a medial meniscectomy in a rat model. Journal of Orthopaedic Research, 2014, 32, 302-309.	2.3	16
30	Developing preclinical models of neuroblastoma: driving therapeutic testing. BMC Biomedical Engineering, 2019, 1, 33.	2.6	14
31	Short-Chain Fatty Acid-Modified Hexosamine for Tissue-Engineering Osteoarthritic Cartilage. Tissue Engineering - Part A, 2013, 19, 2035-2044.	3.1	13
32	Sustained delivery of vincristine inside an orthotopic mouse sarcoma model decreases tumor growth. Journal of Pediatric Surgery, 2016, 51, 2058-2062.	1.6	12
33	Manipulation of variables in local controlled release vincristine treatment in neuroblastoma. Journal of Pediatric Surgery, 2017, 52, 2061-2065.	1.6	12
34	Differential Response of Chondrocytes and Chondrogenic-Induced Mesenchymal Stem Cells to C1-OH Tributanoylated N-Acetylhexosamines. PLoS ONE, 2013, 8, e58899.	2.5	12
35	Fabrication Methods and Form Factors of Gellan Gum-Based Materials for Drug Delivery and Anti-Cancer Applications. ACS Biomaterials Science and Engineering, 2023, 9, 3832-3842.	5.2	12
36	Three-Dimensional, Scaffolded Tumor Model to Study Cell-Driven Microenvironment Effects and Therapeutic Responses. ACS Biomaterials Science and Engineering, 2019, 5, 6742-6754.	5.2	9

#	Article	IF	CITATIONS
37	HepaRG Maturation in Silk Fibroin Scaffolds: Toward Developing a 3D <i>In Vitro</i> Liver Model. ACS Biomaterials Science and Engineering, 2023, 9, 3885-3899.	5.2	8
38	Enhancing sustained-release local therapy: Single versus dual chemotherapy for the treatment of neuroblastoma. Surgery, 2020, 167, 969-977.	1.9	4
39	3D Laser Ablation of Biocompatible Silk Fibroin Hydrogels for Biomedical Applications. , 2015, , .		0
40	Development of a stacked, porous silk scaffold neuroblastoma model for investigating spatial differences in cell and drug responsiveness. Biomaterials Science, 2021, 9, 1272-1290.	5.4	0