
Myungshin Im

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6480949/publications.pdf Version: 2024-02-01

MYUNCSHIN IM

#	Article	IF	CITATIONS
1	Multiwavelength properties of 850-î¼m selected sources from the North Ecliptic Pole SCUBA-2 survey. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2915-2935.	4.4	6
2	Investigating the Nature of the Luminous Ambiguous Nuclear Transient ASASSN-17jz. Astrophysical Journal, 2022, 933, 196.	4.5	9
3	Medium-band Observation of the Neutrino Emitting Blazar, TXS 0506+056. Astrophysical Journal, 2021, 908, 113.	4.5	6
4	Pure Density Evolution of the Ultraviolet Quasar Luminosity Function at 2 ≲ z ≲ 6. Astrophysical Journal Letters, 2021, 910, L11.	8.3	10
5	Discovery of Two TNO-like Bodies in the Asteroid Belt. Astrophysical Journal Letters, 2021, 916, L6.	8.3	19
6	GECKO Optical Follow-up Observation of Three Binary Black Hole Merger Events: GW190408_181802, GW190412, and GW190503_185404. Astrophysical Journal, 2021, 916, 47.	4.5	5
7	Bolometric luminosity estimators using infrared hydrogen lines for dust obscured active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1147-1159.	4.4	2
8	The Galaxy Environment of Extremely Massive Quasars. I. An Overdensity of Hα Emitters at z = 1.47. Astrophysical Journal, 2021, 920, 74.	4.5	0
9	Polarimetric properties of the near-Sun asteroid (155140) 2005 UD in comparison with other asteroids and meteoritic samples. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4128-4142.	4.4	7
10	NEPSC2, the North Ecliptic Pole SCUBA-2 survey: 850-μm map and catalogue of 850-μm-selected sources over 2 deg2. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5065-5079.	4.4	12
11	Cemini Multi-Object Spectrograph Integral Field Unit Spectroscopy of the Double-peaked Broad Emission Line of a Red Active Galactic Nucleus. Astrophysical Journal, 2020, 894, 126.	4.5	4
12	Stellar properties of the host galaxy of an ultraluminous X-ray source in NGC 5252. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 493, L76-L80.	3.3	6
13	The Infrared Medium-deep Survey. VII. Faint Quasars at zÂâ^1⁄4Â5 in the ELAIS-N1 Field. Astrophysical Journal, 2020, 893, 45.	4.5	13
14	Star Formation Enhancement in Barred Disk Galaxies in Interacting Galaxy Clusters. Astrophysical Journal, 2020, 893, 117.	4.5	10
15	High-z Universe Probed via Lensing by QSOs (HULQ). I. Number Estimates of QSO–QSO and QSO–Galaxy Lenses. Astrophysical Journal, 2020, 897, 163.	4.5	5
16	The Infrared Medium-deep Survey. VIII. Quasar Luminosity Function at zÂâ^¼Â5. Astrophysical Journal, 2020, 904, 111.	4.5	26
17	High Star Formation Rates of Low Eddington Ratio Quasars at zÂ≳Â6. Astrophysical Journal, 2019, 879, 117.	4.5	7
18	More connected, more active: galaxy clusters and groups at zÂâ^1⁄4Â1 and the connection between their quiescent galaxy fractions and large-scale environments. Monthly Notices of the Royal Astronomical Society, 2019, 490, 135-155.	4.4	3

#	Article	IF	CITATIONS
19	Space Telescope and Optical Reverberation Mapping Project. VIII. Time Variability of Emission and Absorption in NGC 5548 Based on Modeling the Ultraviolet Spectrum. Astrophysical Journal, 2019, 881, 153.	4.5	34
20	SILVERRUSH. VIII. Spectroscopic Identifications of Early Large-scale Structures with Protoclusters over 200 Mpc at zÂâ^1⁄4Â6–7: Strong Associations of Dusty Star-forming Galaxies. Astrophysical Journal, 2019, 883, 142.	4.5	71
21	Medium-band Photometry Reverberation Mapping of Nearby Active Galactic Nuclei. Astrophysical Journal, 2019, 884, 103.	4.5	7
22	Extremely Massive Quasars Are Not Good Proxies for Dense Environments Compared to Massive Galaxies: Environments of Extremely Massive Quasars and Galaxies. Astrophysical Journal, 2019, 871, 57.	4.5	13
23	Observational evidence for bar formation in disk galaxies via cluster–cluster interaction. Nature Astronomy, 2019, 3, 844-850.	10.1	14
24	Infrared luminosity functions based on 18 mid-infrared bands: revealing cosmic star formation history with AKARI and Hyper Suprime-Cam. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	17
25	The interplay between active galactic nuclei and star formation activities of type 1 active galactic nuclei probed by polycyclic aromatic hydrocarbon 3.3 μm emission feature with AKARI. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	1
26	The Infrared Medium-deep Survey. VI. Discovery of Faint Quasars at zÂâ^1⁄4Â5 with a Medium-band-based Approach. Astrophysical Journal, 2019, 870, 86.	4.5	16
27	Near-infrared polarimetric study of near-Earth object 252P/LINEAR: an implication of scattered light from the evolved dust particles. Astronomy and Astrophysics, 2019, 629, A121.	5.1	6
28	The Herschel-PACS North Ecliptic Pole Survey. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	15
29	Characteristics of mid-infrared PAH emission from star-forming galaxies selected at 250 μm in the North Ecliptic Pole field. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	8
30	<i>Spitzer</i> Observations of the North Ecliptic Pole. Astrophysical Journal, Supplement Series, 2018, 234, 38.	7.7	18
31	The Infrared Medium-deep Survey. IV. The Low Eddington Ratio of A Faint Quasar at zÂâ^1⁄4Â6: Not Every Supermassive Black Hole is Growing Fast in the Early Universe. Astrophysical Journal, 2018, 855, 138.	4.5	17
32	What makes red quasars red?. Astronomy and Astrophysics, 2018, 610, A31.	5.1	21
33	Medium-resolution Optical and Near-infrared Spectral Atlas of 16 2MASS-selected NIR-red Active Galactic Nuclei at zÂâ^¼Â0.3. Astrophysical Journal, Supplement Series, 2018, 238, 37.	7.7	9
34	A Globular Cluster Luminosity Function Distance to NGC 4993 Hosting a Binary Neutron Star Merger GW170817/GRB 170817A. Astrophysical Journal Letters, 2018, 859, L6.	8.3	10
35	Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548. Astrophysical Journal, 2017, 837, 131.	4.5	93
36	The Most Massive Active Galactic Nuclei at 1Â≲ÂzÂ≲Â2. Astrophysical Journal, 2017, 838, 41.	4.5	14

#	Article	IF	CITATIONS
37	SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT.VI. REVERBERATING DISK MODELS FOR NGC 5548. Astrophysical Journal, 2017, 835, 65.	4.5	68
38	Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy. Astrophysical Journal, 2017, 846, 55.	4.5	33
39	The Infrared Medium-deep Survey. III. Survey of Luminous Quasars at 4.7Ââ‰ÂzÂâ‰Â5.4*. Astrophysical Journal, Supplement Series, 2017, 231, 16.	7.7	13
40	Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817. Astrophysical Journal Letters, 2017, 849, L16.	8.3	59
41	Reverberation Mapping of PG 0934+013 with the Southern African Large Telescope. Astrophysical Journal, 2017, 847, 125.	4.5	9
42	MASSIVE GALAXIES ARE LARGER IN DENSE ENVIRONMENTS: ENVIRONMENTAL DEPENDENCE OF MASS–SIZE RELATION OF EARLY-TYPE GALAXIES. Astrophysical Journal, 2017, 834, 73.	4.5	34
43	ALMA and RATIR observations of GRBÂ131030A. Publication of the Astronomical Society of Japan, 2017, 69,	2.5	2
44	Ionized Gas Kinematics around an Ultra-luminous X-Ray Source in NGC 5252: Additional Evidence for an Off-nuclear AGN. Astrophysical Journal Letters, 2017, 844, L21.	8.3	8
45	Minor Contribution of Quasars to Ionizing Photon Budget at zÂâ^1⁄4Â6: Update on Quasar Luminosity Function at the Faint End with Subaru/Suprime-Cam. Astrophysical Journal Letters, 2017, 847, L15.	8.3	57
46	Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei. Astrophysical Journal, Supplement Series, 2017, 232, 21.	7.7	48
47	SEOUL NATIONAL UNIVERSITY CAMERA II (SNUCAM-II): THE NEW SED CAMERA FOR THE LEE SANG GAK TELESCOPE (LSGT). Journal of the Korean Astronomical Society, 2017, 50, 71-78.	1.5	5
48	Development of SED Camera for Quasars in Early Universe (SQUEAN). Publications of the Astronomical Society of the Pacific, 2016, 128, 115004.	3.1	6
49	SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. III. OPTICAL CONTINUUM EMISSION AND BROADBAND TIME DELAYS IN NGC 5548. Astrophysical Journal, 2016, 821, 56.	4.5	200
50	DISCOVERY OF A SUPERCLUSTER AT zÂâ^1⁄4Â0.91 AND TESTING THE ΛCDM COSMOLOGICAL MODEL. Astrophysic Journal Letters, 2016, 821, L10.	cal 8.3	14
51	SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. IV. ANOMALOUS BEHAVIOR OF THE BROAD ULTRAVIOLET EMISSION LINES IN NGC 5548. Astrophysical Journal, 2016, 824, 11.	4.5	63
52	Photometric transformation from RGB Bayer filter system to Johnson–Cousins BVR filter system. Advances in Space Research, 2016, 57, 509-518.	2.6	13
53	THE INFRARED MEDIUM-DEEP SURVEY. V. A NEW SELECTION STRATEGY FOR QUASARS AT z > 5 BASED ON MEDIUM-BAND OBSERVATIONS WITH SQUEAN. Journal of the Korean Astronomical Society, 2016, 49, 25-35.	1.5	10
54	Mid-infrared luminosity function of local star-forming galaxies in the North Ecliptic Pole-Wide survey field of <i>AKARI</i> . Monthly Notices of the Royal Astronomical Society, 2015, 454, 1573-1584.	4.4	7

#	Article	IF	CITATIONS
55	EVOLUTION OF STAR FORMATION PROPERTIES OF HIGH-REDSHIFT CLUSTER GALAXIES SINCE <i>z</i> = 2. Astrophysical Journal, 2015, 810, 90.	4.5	33
56	ACCRETION RATES OF RED QUASARS FROM THE HYDROGEN P <i>β</i> LINE. Astrophysical Journal, 2015, 812, 66.	4.5	26
57	DISCOVERY OF A FAINT QUASAR AT <i>z</i> â ¹ /4 6 AND IMPLICATIONS FOR COSMIC REIONIZATION. Astrophysical Journal Letters, 2015, 813, L35.	8.3	34
58	Evolution of mid-infrared galaxy luminosity functions from the entire <i>AKARI</i> NEP deep field with new CFHT photometry. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1684-1693.	4.4	14
59	Quenching of Star-formation Activity of High-redshift Galaxies in Clusters and Field. Proceedings of the International Astronomical Union, 2015, 11, 28-28.	0.0	0
60	CHAPTER VIII: NEW MEMBERS AND DECEASED MEMBERS AT THE GENERAL ASSEMBLY. Proceedings of the International Astronomical Union, 2015, 13, 121-140.	0.0	0
61	THE SUBARU HIGH-‹i>zQUASAR SURVEY: DISCOVERY OF FAINT‹i>zâ^1⁄4 6 QUASARS. Astrophysical Journal, 2015, 798, 28.	4.5	100
62	THE VERY EARLY LIGHT CURVE OF SN 2015F IN NGC 2442: A POSSIBLE DETECTION OF SHOCK-HEATED COOLING EMISSION AND CONSTRAINTS ON SN Ia PROGENITOR SYSTEM. Astrophysical Journal, Supplement Series, 2015, 221, 22.	7.7	26
63	THE AKARI 2.5–5.0 μm SPECTRAL ATLAS OF TYPE-1 ACTIVE GALACTIC NUCLEI: BLACK HOLE MASS ESTIMATOI LINE RATIO, AND HOT DUST TEMPERATURE. Astrophysical Journal, Supplement Series, 2015, 216, 17.	R,7.7	28
64	COLOR VARIABILITY OF HBC 722 IN THE POST-OUTBURST PHASES. Astronomical Journal, 2015, 149, 73.	4.7	8
65	Exposure time calculator for Immersion Grating Infrared Spectrograph: IGRINS. Advances in Space Research, 2015, 55, 2509-2518.	2.6	7
66	HOST GALAXY PROPERTIES AND BLACK HOLE MASS OF SWIFT J164449.3+573451 FROM MULTI-WAVELENGTH LONG-TERM MONITORING AND <i>HST</i>	4.5	11
67	CORRELATION BETWEEN GALAXY MERGERS AND LUMINOUS ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2015, 804, 34.	4.5	61
68	LINKING GALAXIES TO DARK MATTER HALOS AT <i>z</i> â ¹ /4 1: DEPENDENCE OF GALAXY CLUSTERING ON STELL/ MASS AND SPECIFIC STAR FORMATION RATE. Astrophysical Journal, 2015, 806, 189.	^{AR} 4.5	10
69	REST-FRAME OPTICAL SPECTRA AND BLACK HOLE MASSES OF 3 < <i>z</i> < 6 QUASARS. Astrophysical Journal, 2015, 806, 109.	4.5	64
70	MASSIVE STRUCTURES OF GALAXIES AT HIGH REDSHIFTS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY FIELDS. Journal of the Korean Astronomical Society, 2015, 48, 21-55.	1.5	10
71	LEE SANG GAK TELESCOPE (LSGT): A REMOTELY OPERATED ROBOTIC TELESCOPE FOR EDUCATION AND RESEARCH AT SEOUL NATIONAL UNIVERSITY. Journal of the Korean Astronomical Society, 2015, 48, 207-212.	1.5	9
72	WHAT MAKES A RADIO-AGN TICK? TRIGGERING AND FEEDING OF ACTIVE GALAXIES WITH STRONG RADIO JETS. Publications of the Korean Astronomical Society, 2015, 30, 447-449.	0.0	0

#	Article	IF	CITATIONS
73	HIGH REDSHIFT QUASAR SURVEY WITH IMS. Publications of the Korean Astronomical Society, 2015, 30, 405-407.	0.0	0
74	ENVIRONMENTAL DEPENDENCE OF STELLAR POPULATION PROPERTIES OF HIGH-REDSHIFT GALAXIES. Publications of the Korean Astronomical Society, 2015, 30, 413-415.	0.0	0
75	BRACKETT LINE-BASED MBHESTIMATORS AND HOT DUST TEMPERATURES OF TYPE 1 AGNs FROM AKARI SPECTROSCOPIC DATA. Publications of the Korean Astronomical Society, 2015, 30, 443-445.	0.0	0
76	<i>>J</i> - AND <i>H</i> -BAND IMAGING OF <i>AKARI</i> NORTH ECLIPTIC POLE SURVEY FIELD. Astrophysical Journal, Supplement Series, 2014, 214, 20.	7.7	20
77	A TALE OF TWO FEEDBACKS: STAR FORMATION IN THE HOST GALAXIES OF RADIO AGNs. Astrophysical Journal, 2014, 784, 137.	4.5	31
78	SYNCHROTRON SELF-INVERSE COMPTON RADIATION FROM REVERSE SHOCK ON GRB 120326A. Astrophysical Journal, 2014, 789, 146.	4.5	27
79	THE INFRARED MEDIUM-DEEP SURVEY. II. HOW TO TRIGGER RADIO AGNs? HINTS FROM THEIR ENVIRONMENTS. Astrophysical Journal, 2014, 797, 26.	4.5	10
80	TRACING RECENT STAR FORMATION OF RED EARLY-TYPE GALAXIES OUT TOzâ ⁻¹ /4 1. Astrophysical Journal, 2014, 791, 134.	4.5	6
81	Medium resolution near-infrared spectra of the host galaxies of nearby quasars. Advances in Space Research, 2014, 54, 1129-1134.	2.6	2
82	Optical – near-infrared catalog for the AKARI north ecliptic pole Deep field. Astronomy and Astrophysics, 2014, 566, A60.	5.1	33
83	OPTICAL MULTI-CHANNEL INTENSITY INTERFEROMETRY - OR: HOW TO RESOLVE O-STARS IN THE MAGELLANIC CLOUDS. Journal of the Korean Astronomical Society, 2014, 47, 235-253.	1.5	14
84	Detection of Hα emission from z > 3.5 submillimetre luminous galaxies with AKARI-FUHYU spectroscopy. Monthly Notices of the Royal Astronomical Society, 2013, 436, 395-400.	4.4	3
85	OPTICAL-NEAR-INFRARED COLOR GRADIENTS AND MERGING HISTORY OF ELLIPTICAL GALAXIES. Astrophysical Journal, 2013, 766, 109.	4.5	19
86	A Relation of the PAH3.3 <i>μ</i> m Feature with Star-forming Activity for Galaxies with aWide Range of Infrared Luminosity. Publication of the Astronomical Society of Japan, 2013, 65, .	2.5	21
87	HECTOSPEC AND HYDRA SPECTRA OF INFRARED LUMINOUS SOURCES IN THE <i>AKARI</i> NORTH ECLIPTIC POLE SURVEY FIELD. Astrophysical Journal, Supplement Series, 2013, 207, 37.	7.7	33
88	PHYSICAL PROPERTIES OF LUMINOUS DUST-POOR QUASARS. Astrophysical Journal, 2013, 779, 104.	4.5	24
89	Through the kaleidoscope: star formation the host galaxies of radio-AGN. Proceedings of the International Astronomical Union, 2013, 9, 323-326.	0.0	0
90	VARIABILITY AT THE EDGE: OPTICAL NEAR/IR RAPID-CADENCE MONITORING OF NEWLY OUTBURSTING FU ORIONIS OBJECT HBC 722. Astrophysical Journal, 2013, 764, 22.	4.5	17

#	Article	IF	CITATIONS
91	FOCAL REDUCER FOR CQUEAN (Camera for QUasars in EArly uNiverse). Journal of the Korean Astronomical Society, 2013, 46, 161-172.	1.5	11
92	Star Formation and AGN Activity in Galaxies Classified Using the 1.6 μm Bump and PAH Features at <i>z</i> = 0.4–2. Publication of the Astronomical Society of Japan, 2012, 64, .	2.5	31
93	PANCHROMATIC OBSERVATIONS OF THE TEXTBOOK GRB 110205A: CONSTRAINING PHYSICAL MECHANISMS OF PROMPT EMISSION AND AFTERGLOW. Astrophysical Journal, 2012, 751, 90.	4.5	41
94	DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY. Astrophysical Journal Letters, 2012, 760, L33.	8.3	42
95	The North Ecliptic Pole Wide survey of AKARI: a near- and mid-infrared source catalog. Astronomy and Astrophysics, 2012, 548, A29.	5.1	36
96	<i>AKARI</i> OBSERVATION OF THE NORTH ECLIPTIC POLE (NEP) SUPERCLUSTER AT <i>z</i> = 0.087: MID-INFRARED VIEW OF TRANSITION GALAXIES. Astrophysical Journal, 2012, 745, 181.	4.5	18
97	The AKARI NEP-Deep survey: a mid-infrared source catalogue. Astronomy and Astrophysics, 2012, 537, A24.	5.1	41
98	Where the active galaxies live: a panchromatic view of radio-AGN in the AKARI-NEP field. Proceedings of the International Astronomical Union, 2012, 8, 270-270.	0.0	0
99	THE 3.3 μm POLYCYCLIC AROMATIC HYDROCARBON EMISSION AS A STAR FORMATION RATE INDICATOR. Astrophysical Journal, 2012, 760, 120.	4.5	15
100	Camera for Quasars in Early Universe (CQUEAN)1. Publications of the Astronomical Society of the Pacific, 2012, 124, 839-853.	3.1	23
101	A Y-BAND LOOK OF THE SKY WITH 1-M CLASS TELESCOPES. Journal of the Korean Astronomical Society, 2012, 45, 7-17.	1.5	6
102	OPTICAL/NIR IMAGING OF AKARI NEP-WIDE SURVEY FIELD. Publications of the Korean Astronomical Society, 2012, 27, 145-146.	0.0	0
103	Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature, 2011, 476, 421-424.	27.8	442
104	MERGING GALAXY CLUSTER A2255 IN MID-INFRARED. Astrophysical Journal, 2011, 727, 14.	4.5	25
105	DUST PROPERTIES IN THE AFTERGLOW OF GRB 071025 AT <i>z</i> â ¹ /4 5. Astrophysical Journal Letters, 2011, 741, L20.	8.3	8
106	SPECTROSCOPICALLY SELECTED <i>SPITZER </i> 24 <i>î¼m </i> ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2011, 732, 21.	4.5	3
107	IRAS 15099–5856: REMARKABLE MID-INFRARED SOURCE WITH PROMINENT CRYSTALLINE SILICATE EMISSION EMBEDDED IN THE SUPERNOVA REMNANT MSH15–5 <i>2</i>). Astrophysical Journal, 2011, 732, 6.	4.5	11
108	Probing the nature of high-z short GRB 090426 with its early optical and X-ray afterglows. Monthly Notices of the Royal Astronomical Society, 2011, 410, 27-32.	4.4	44

7

#	Article	IF	CITATIONS
109	A tale of two GRB-SNe at a common redshift of z=0.54. Monthly Notices of the Royal Astronomical Society, 2011, 413, 669-685.	4.4	72
110	The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33. Nature, 2011, 480, 72-74.	27.8	100
111	Type-Ia Supernovae and Explosions in the Universe. Physics and High Technology, 2011, 20, 9.	0.1	0
112	Did the Type-Ia Supernova Research Discover the Acceleration of the Universe for the First Time?. Physics and High Technology, 2011, 20, 14.	0.1	0
113	Evolution of infrared luminosity functions of galaxies in the AKARI NEP-deep field. Astronomy and Astrophysics, 2010, 514, A6.	5.1	79
114	Polycyclic aromatic hydrocarbon (PAH) luminous galaxies at <i>z</i> ~ 1. Astronomy and Astrophysics, 2010, 514, A5.	5.1	40
115	Environmental dependence of 8Âμm luminosity functions of galaxies atz~ 0.8. Astronomy and Astrophysics, 2010, 514, A7.	5.1	7
116	The AGN fraction of submm-selected galaxies and contributions to the submm/mm-wave extragalactic background light. Astronomy and Astrophysics, 2010, 514, A10.	5.1	9
117	THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY. Astrophysical Journal, 2010, 722, 566-576.	4.5	216
118	NEW ESTIMATORS OF BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI WITH HYDROGEN PASCHEN LINES. Astrophysical Journal, 2010, 724, 386-399.	4.5	50
119	A deep survey of the AKARI north ecliptic pole field. Astronomy and Astrophysics, 2010, 517, A54.	5.1	26
120	ULTRA DEEP <i>AKARI</i> OBSERVATIONS OF ABELL 2218: RESOLVING THE 15 μm EXTRAGALACTIC BACKGROUND LIGHT. Astrophysical Journal Letters, 2010, 716, L45-L50.	8.3	22
121	THE AFTERGLOWS OF <i>SWIFT</i> -ERA GAMMA-RAY BURSTS. I. COMPARING PRE- <i>SWIFT</i> AND <i>SWIFT</i> -ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS. Astrophysical Journal, 2010, 720, 1513-1558.	4.5	253
122	The AKARI FU-HYU galaxy evolution program: first results fromÂtheÂGOODS-N field. Astronomy and Astrophysics, 2010, 514, A9.	5.1	7
123	OPTICAL IMAGES AND SOURCE CATALOG OF <i>AKARI</i> NORTH ECLIPTIC POLE WIDE SURVEY FIELD. Astrophysical Journal, Supplement Series, 2010, 190, 166-180.	7.7	37
124	Source counts at 15 microns from the AKARI NEP survey. Astronomy and Astrophysics, 2010, 514, A8.	5.1	18
125	SEOUL NATIONAL UNIVERSITY 4K×4K CAMERA (SNUCAM) FOR MAIDANAK OBSERVATORY. Journal of the Korean Astronomical Society, 2010, 43, 75-93.	1.5	36
126	FIRST KOREAN OBSERVATIONS OF GAMMA-RAY BURST AFTERGLOWS AT MT. LEMMON OPTICAL ASTRONOMY OBSERVATORY (LOAO). Journal of the Korean Astronomical Society, 2010, 43, 95-104.	1.5	13

#	Article	IF	CITATIONS
127	INFRARED SPECTROGRAPH SPECTROSCOPY AND MULTI-WAVELENGTH STUDY OF LUMINOUS STAR-FORMING GALAXIES AT <i>z</i> ^{i}a % f 1.9. Astrophysical Journal, 2009, 700, 183-198.	4.5	56
128	THE MID-INFRARED VIEW OF RED SEQUENCE GALAXIES IN ABELL 2218 WITH <i>AKARI</i> . Astrophysical Journal, 2009, 695, L198-L202.	4.5	15
129	OVERDENSITIES OF GALAXIES AT <i>z</i> â ¹ /4 3.7 IN <i>CHANDRA</i> DEEP FIELD-SOUTH. Astrophysical Journal, 2009, 691, L33-L36.	4.5	19
130	Multi-wavelength observations of the GRB 080319B afterglow and the modeling constraints. Astronomy and Astrophysics, 2009, 504, 45-51.	5.1	21
131	<i>SWIFT</i> GRB GRB071010B: OUTLIER OF THE <i>E</i> ^{src} _{peak} – <i>E</i> _γ AND <i>E</i> _{iso} – <i>E</i> ^{src} _{peak} – <i>t</i> . Astrophysical Journal, 2009, 706, L183-L187.	4.5	12
132	REDDENING AND DISTANCE OF THE LOCAL GROUP STARBURST GALAXY IC 10. Astrophysical Journal, 2009, 703, 816-828.	4.5	23
133	North Ecliptic Pole Wide Field Survey of AKARI: Survey Strategy and Data Characteristics. Publication of the Astronomical Society of Japan, 2009, 61, 375-385.	2.5	33
134	Photometric redshift accuracy in <i>AKARI</i> deep surveys. Monthly Notices of the Royal Astronomical Society, 2009, 394, 375-397.	4.4	16
135	THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2009, 182, 543-558.	7.7	4,201
136	QSONG: Supermassive Black Holes in Quasars at World's End. Proceedings of the International Astronomical Union, 2009, 5, 40-45.	0.0	0
137	Mapping dusty star formation in and around a cluster at <i>z</i> = 0.81 by wide-field imaging with AKARI. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1758-1770.	4.4	60
138	Galaxy Clusters at 0.9 <z< 1.7="" 2008,="" 60,="" akari="" astronomical="" deep="" field.="" in="" japan,="" nep="" of="" publication="" s531-s543.<="" society="" td="" the=""><td>2.5</td><td>13</td></z<>	2.5	13
139	AKARI/IRC Deep Survey in the North Ecliptic Pole Region. Publication of the Astronomical Society of Japan, 2008, 60, S517-S529.	2.5	54
140	THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS. Astronomical Journal, 2008, 135, 348-373.	4.7	191
141	A Measurement of the Rate of Type Ia Supernovae at Redshift <i>z</i> â‰^ 0.1 from the First Season of the SDSSâ€I Supernova Survey. Astrophysical Journal, 2008, 682, 262-282.	4.5	94
142	Decomposition of the Host Galaxies of Active Galactic Nuclei Using <i>Hubble Space Telescope</i> Images. Astrophysical Journal, Supplement Series, 2008, 179, 283-305.	7.7	54
143	The Mid-Infrared Fundamental Plane of Early-Type Galaxies. Astrophysical Journal, 2008, 678, L97-L100.	4.5	24
144	Seoul National University Bright Quasar Survey in Optical (SNUQSO). I. First Phase Observations and Results. Astrophysical Journal, Supplement Series, 2008, 175, 116-127.	7.7	14

#	Article	IF	CITATIONS
145	FIRST-YEAR SPECTROSCOPY FOR THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY. Astronomical Journal, 2008, 135, 1766-1784.	4.7	52
146	The Origin of the Intrinsic Scatter in the Relation Between Black Hole Mass and Bulge Luminosity for Nearby Active Galaxies. Astrophysical Journal, 2008, 687, 767-827.	4.5	75
147	THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY. Astronomical Journal, 2008, 135, 338-347.	4.7	377
148	Nature of Infrared Sources in 11 \$mu \$m Selected Sample from Early Data of the AKARI North Ecliptic Pole Deep Survey. Publication of the Astronomical Society of Japan, 2007, 59, S529-S542.	2.5	21
149	Multi-Wavelength Analysis of 18\$mu \$m-Selected Galaxies in the AKARI/Infrared-Camera monitor field towards the North Ecliptic Pole. Publication of the Astronomical Society of Japan, 2007, 59, S557-S569.	2.5	21
150	Optical Identification of 15\$mu \$m Sources in the AKARI Performance Verification Field toward the North Ecliptic Pole. Publication of the Astronomical Society of Japan, 2007, 59, S543-S555.	2.5	13
151	The Angstrom Project Alert System: Real-Time Detection of Extragalactic Microlensing. Astrophysical Journal, 2007, 661, L45-L48.	4.5	13
152	An Optical Source Catalog of the North Ecliptic Pole Region. Astrophysical Journal, Supplement Series, 2007, 172, 583-598.	7.7	42
153	Detection of M31 Binaries via High adence Pixelâ€lensing Surveys. Astrophysical Journal, 2007, 666, 236-241.	4.5	8
154	The Host Galaxy of the Quasar HE 0450â^'2958. Astrophysical Journal, 2007, 658, 107-113.	4.5	21
155	Massive Lyman Break Galaxies at <i>z</i> â^1⁄4 3 in the <i>Spitzer</i> Extragalactic First Look Survey. Astrophysical Journal, 2007, 669, 749-764.	4.5	17
156	Seoul National University Bright Quasar Survey in Optical (SNUQSO). II. Discovery of 40 Bright Quasars Near the Galactic Plane. Astrophysical Journal, 2007, 664, 64-70.	4.5	20
157	Spectroscopic Survey of 1.4 GHz and 24 μm Sources in theSpitzerFirst Look Survey with WIYN Hydra. Astrophysical Journal, 2007, 663, 218-233.	4.5	31
158	Galaxy Luminosity Functions to <i>z</i> â^1⁄41 from DEEP2 and COMBOâ€17: Implications for Red Galaxy Formation. Astrophysical Journal, 2007, 665, 265-294.	4.5	890
159	Star Formation Rates and Extinction Properties of IRâ€luminous Galaxies in theSpitzerFirst Look Survey. Astrophysical Journal, 2006, 637, 227-241.	4.5	47
160	Spitzer70 and 160 μm Observations of the Extragalactic First Look Survey. Astronomical Journal, 2006, 131, 250-260.	4.7	104
161	An Infrared Study of Lyman Break Galaxies in the Spitzer First Look Survey Field. Proceedings of the International Astronomical Union, 2006, 2, 362-363.	0.0	1
162	Constraints on the Star Formation Rate in Active Galaxies. Astrophysical Journal, 2006, 642, 702-710.	4.5	85

#	Article	IF	CITATIONS
163	The DEEP Groth Strip Survey. VI. Spectroscopic, Variability, and Xâ€Ray Detection of Active Galactic Nuclei. Astrophysical Journal, Supplement Series, 2006, 166, 69-88.	7.7	29
164	Deep u *―and g â€Band Imaging of the Spitzer Space Telescope First Look Survey Field: Observations and Source Catalogs. Astrophysical Journal, Supplement Series, 2006, 164, 435-449.	7.7	17
165	TheSpitzer Space TelescopeExtragalactic First Look Survey: 24 μm Data Reduction, Catalog, and Source Identification. Astronomical Journal, 2006, 131, 2859-2876.	4.7	82
166	The DEEP Groth Strip Survey. I. The Sample. Astrophysical Journal, Supplement Series, 2005, 159, 41-59.	7.7	35
167	Colors of Luminous Bulges in Cluster MS 1054-03 and Field Galaxies at Redshifts z  ~ 0.83. Astrophysical Journal, 2005, 634, L5-L8.	4.5	10
168	The DEEP Groth Strip Galaxy Redshift Survey. III. Redshift Catalog and Properties of Galaxies. Astrophysical Journal, 2005, 620, 595-617.	4.5	153
169	The Infrared Array Camera Component of the Spitzer Space Telescope Extragalactic First Look Survey. Astrophysical Journal, Supplement Series, 2005, 161, 41-52.	7.7	92
170	The DEEP Groth Strip Survey. VIII. The Evolution of Luminous Field Bulges at Redshift z â^1⁄4 1. Astrophysical Journal, Supplement Series, 2005, 157, 175-217.	7.7	34
171	OPTICAL-NEAR INFRARED COLOR GRADIENTS OF ELLIPTICAL GALAXIES AND THEIR ENVIRONMENTAL DEPENDENCE. Journal of the Korean Astronomical Society, 2005, 38, 149-151.	1.5	25
172	The Far―and Midâ€Infrared/Radio Correlations in the Spitzer Extragalactic First Look Survey. Astrophysical Journal, Supplement Series, 2004, 154, 147-150.	7.7	252
173	Extragalactic Source Counts at 24 Microns in the Spitzer First Look Survey. Astrophysical Journal, Supplement Series, 2004, 154, 66-69.	7.7	54
174	The First Measurements of Galaxy Clustering from Infrared Array Camera (IRAC) Data of the Spitzer First Look Survey. Astrophysical Journal, Supplement Series, 2004, 154, 35-38.	7.7	13
175	Obscured and Unobscured Active Galactic Nuclei in the Spitzer Space Telescope First Look Survey. Astrophysical Journal, Supplement Series, 2004, 154, 166-169.	7.7	589
176	Characterization of Extragalactic 24 Micron Sources in the Spitzer First Look Survey. Astrophysical Journal, Supplement Series, 2004, 154, 60-65.	7.7	38
177	Spitzer 24 Micron Observations of Optical/Nearâ€Infrared–Selected Extremely Red Galaxies: Evidence for Assembly of Massive Galaxies at z  â^¼â€‰1–2?. Astrophysical Journal, Supplement Series, 2004, 154,	7 5 ⁷ 79.	36
178	Infrared Properties of Radioâ€selected Submillimeter Galaxies in the Spitzer First Look Survey Verification Field. Astrophysical Journal, Supplement Series, 2004, 154, 137-141.	7.7	46
179	NIRCAM image simulations for NGST wavefront sensing. , 2003, , .		4
180	The DEEP Groth Strip Survey. IX. Evolution of the Fundamental Plane of Field Galaxies. Astrophysical Journal, 2003, 597, 239-262.	4.5	106

#	Article	IF	CITATIONS
181	The DEEP Groth Strip Survey. X. Number Density and Luminosity Function of Field E/S0 Galaxies atz< 1. Astrophysical Journal, 2002, 571, 136-171.	4.5	134
182	The DEEP Groth Strip Survey. II. Hubble Space Telescope Structural Parameters of Galaxies in the Groth Strip. Astrophysical Journal, Supplement Series, 2002, 142, 1-33.	7.7	375
183	A Hyper Extremely Red Object in the Field near 53W002. Astrophysical Journal, 2002, 578, L19-L22.	4.5	16
184	Are There Blue, Massive E/SO Galaxies at [CLC][ITAL]z[/ITAL][/CLC] < 1? Kinematics of Blue Spheroidal Galaxy Candidates. Astronomical Journal, 2001, 122, 750-763.	4.7	46
185	Optical–Near-Infrared Color Gradients in Early-Type Galaxies at [CLC][ITAL]z[/ITAL][/CLC] â‰â€‰1.0. Astrophysical Journal, 2001, 560, L41-L44.	4.5	19
186	The Morphologically Divided Redshift Distribution of Faint Galaxies. Astrophysical Journal, 1999, 510, 82-89.	4.5	31
187	A Measurement of the Cosmological Constant Using Elliptical Galaxies as Strong Gravitational Lenses. Astrophysical Journal, 1997, 475, 457-461.	4.5	61
188	Evidence for Galaxy Interactions/Mergers from Medium Deep Survey WFPC2 Data. Astrophysical Journal, 1997, 480, 59-71.	4.5	44
189	Luminosity Functions of Elliptical Galaxies at [ITAL]z[/ITAL] < 1.2. Astrophysical Journal, 1996, 461, .	4.5	34
190	New "Einstein Cross―Gravitational Lens Candidates in [ITAL]Hubble Space Telescope[/ITAL] WFPC2 Survey Images. Astrophysical Journal, 1995, 453, .	4.5	24
191	A test of galaxy evolutionary models via angular sizes. Astrophysical Journal, 1995, 441, 494.	4.5	30
192	The axis ratio distribution of faint galaxies: Evidence for a populatin of dwarfgalaxies at I approximately 20.5. Astrophysical Journal, 1995, 445, L15.	4.5	15
193	The Theta-z relation for HST bulges and disks out to Z approximately equal 0.8. Astrophysical Journal, 1994, 434, L55.	4.5	29
194	Voyager Observations of Diffuse Far-Ultraviolet Continuum and Line Emission in Eridanus. Astrophysical Journal, 1993, 419, 739.	4.5	11