

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6480806/publications.pdf Version: 2024-02-01

CODNET A

#	Article	IF	CITATIONS
1	Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibres. Sensors and Actuators B: Chemical, 2013, 187, 401-406.	7.8	75
2	Flexible sensor based on carbon nanofibers with multifunctional sensing features. Talanta, 2013, 107, 239-247.	5.5	31
3	Transport in quantum dot stacks using the transfer Hamiltonian method in self-consistent field regime. Europhysics Letters, 2012, 98, 17003.	2.0	11
4	Advanced Performances In Gas Sensors: Stretchable, Flexible, Wireless, Wearable. Procedia Engineering, 2011, 25, 1425-1428.	1.2	6
5	A model of the behavior of the limiting current oxygen sensors. Sensors and Actuators B: Chemical, 2009, 140, 432-438.	7.8	26
6	Development and application of micromachined Pd/SnO2 gas sensors with zeolite coatings. Sensors and Actuators B: Chemical, 2008, 133, 435-441.	7.8	43
7	Toward a Systematic Understanding of Photodetectors Based on Individual Metal Oxide Nanowires. Journal of Physical Chemistry C, 2008, 112, 14639-14644.	3.1	130
8	Ab initio insights into the visible luminescent properties of ZnO. Thin Solid Films, 2007, 515, 8670-8673.	1.8	28
9	The influence of additives on gas sensing and structural properties of In2O3-based ceramics. Sensors and Actuators B: Chemical, 2007, 120, 657-664.	7.8	47
10	Gas detection with SnO2 sensors modified by zeolite films. Sensors and Actuators B: Chemical, 2007, 124, 99-110.	7.8	60
11	Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films, 2005, 479, 38-51.	1.8	137
12	Gas-sensing characteristics of one-electrode gas sensors based on doped In2O3 ceramics. Sensors and Actuators B: Chemical, 2004, 103, 13-22.	7.8	60
13	Use of zeolite films to improve the selectivity of reactive gas sensors. Catalysis Today, 2003, 82, 179-185.	4.4	114
14	Strategies to enhance the carbon monoxide sensitivity of tin oxide thin films. Sensors and Actuators B: Chemical, 2003, 95, 90-96.	7.8	87
15	Optimization of tin dioxide nanosticks faceting for the improvement of palladium nanocluster epitaxy. Applied Physics Letters, 2002, 80, 329-331.	3.3	70
16	Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. Journal of Applied Physics, 2002, 92, 853-861.	2.5	301
17	Microdeposition of microwave obtained nanoscaled SnO2 powders for gas sensing microsystems. Sensors and Actuators B: Chemical, 2002, 84, 60-65.	7.8	18
18	Built-in active filter for an improved response to carbon monoxide combining thin- and thick-film technologies. Sensors and Actuators B: Chemical, 2002, 87, 88-94.	7.8	26

CORNET A

#	Article	IF	CITATIONS
19	Surface activation by Pt-nanoclusters on titania for gas sensing applications. Materials Science and Engineering C, 2002, 19, 105-109.	7.3	82
20	Pulverisation method for active layer coating on microsystems. Sensors and Actuators B: Chemical, 2002, 84, 78-82.	7.8	17
21	Electroless Addition of Catalytic Pd to SnO2Nanopowders. Chemistry of Materials, 2001, 13, 4362-4366.	6.7	37
22	Deposition on micromachined silicon substrates of gas sensitive layers obtained by a wet chemical route: a CO/CH4 high performance sensor. Thin Solid Films, 2001, 391, 265-269.	1.8	31
23	In situ analysis of the conductance of SnO2 crystalline nanoparticles in the presence of oxidizing or reducing atmosphere by scanning tunneling microscopy. Sensors and Actuators B: Chemical, 2001, 78, 57-63.	7.8	16
24	Innovative method of pulverisation coating of prestabilized nanopowders for mass production of gas sensors. Sensors and Actuators B: Chemical, 2001, 78, 78-82.	7.8	12
25	CO–CH4 selectivity enhancement by in situ Pd-catalysed microwave SnO2 nanoparticles for gas detectors using active filter. Sensors and Actuators B: Chemical, 2001, 78, 151-160.	7.8	50
26	Properties of nanocrystalline SnO2 obtained by means of a microwave process. Materials Science and Engineering C, 2001, 15, 203-205.	7.3	29
27	New method to obtain stable small-sized SnO2 powders for gas sensors. Sensors and Actuators B: Chemical, 1999, 58, 360-364.	7.8	36