Hannu Teisala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6480413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grafting Silicone at Room Temperature—a Transparent, Scratch-resistant Nonstick Molecular Coating. Langmuir, 2020, 36, 4416-4431.	1.6	76
2	Direct Observation of Gas Meniscus Formation on a Superhydrophobic Surface. ACS Nano, 2019, 13, 2246-2252.	7.3	13
3	Flowâ€Induced Longâ€Term Stable Slippery Surfaces. Advanced Science, 2019, 6, 1900019.	5.6	34
4	On the limit of superhydrophobicity: defining the minimum amount of TiO ₂ nanoparticle coating. Materials Research Express, 2019, 6, 035004.	0.8	6
5	Hierarchical Structures for Superhydrophobic and Superoleophobic Surfaces. Langmuir, 2019, 35, 10689-10703.	1.6	105
6	Ultrafast Processing of Hierarchical Nanotexture for a Transparent Superamphiphobic Coating with Extremely Low Rollâ€Off Angle and High Impalement Pressure. Advanced Materials, 2018, 30, e1706529.	11.1	117
7	Characteristics of nFOG, an aerosol-based wet thin film coating technique. Journal of Coatings Technology Research, 2018, 15, 623-632.	1.2	4
8	Icephobicity of Slippery Liquid Infused Porous Surfaces under Multiple Freeze–Thaw and Ice Accretion–Detachment Cycles. Advanced Materials Interfaces, 2018, 5, 1800828.	1.9	57
9	Wetting over pre-existing liquid films. Physical Review Fluids, 2018, 3, .	1.0	9
10	Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate. Applied Physics Letters, 2017, 110, .	1.5	57
11	Protecting an atomic layer deposited aluminum oxide barrier coating on a flexible polymer substrate. Thin Solid Films, 2017, 621, 151-155.	0.8	4
12	Planar fluidic channels on TiO2 nanoparticle coated paperboard. Nordic Pulp and Paper Research Journal, 2016, 31, 232-238.	0.3	4
13	Superamphiphobic overhang structured coating on a biobased material. Applied Surface Science, 2016, 389, 135-143.	3.1	38
14	Roll-to-Roll Coating by Liquid Flame Spray Nanoparticle Deposition. Materials Research Society Symposia Proceedings, 2015, 1747, 37.	0.1	2
15	Binary TiO2/SiO2 nanoparticle coating for controlling the wetting properties of paperboard. Materials Chemistry and Physics, 2015, 149-150, 230-237.	2.0	26
16	Review on Liquid Flame Spray in paper converting: Multifunctional superhydrophobic nanoparticle coatings. Nordic Pulp and Paper Research Journal, 2014, 29, 747-759.	0.3	11
17	Creation of superhydrophilic surfaces of paper and board. Journal of Adhesion Science and Technology, 2014, 28, 864-879.	1.4	15
18	Superhydrophobic Coatings on Celluloseâ€Based Materials: Fabrication, Properties, and Applications. Advanced Materials Interfaces, 2014, 1, 1300026.	1.9	221

Hannu Teisala

#	Article	IF	CITATIONS
19	Paper-Based Microfluidics: Fabrication Technique and Dynamics of Capillary-Driven Surface Flow. ACS Applied Materials & Interfaces, 2014, 6, 20060-20066.	4.0	107
20	Switchable water absorption of paper via liquid flame spray nanoparticle coating. Cellulose, 2014, 21, 2033-2043.	2.4	3
21	Adjustable wetting of Liquid Flame Spray (LFS) TiO ₂ -nanoparticle coated board: Batch-type versus roll-to-roll stimulation methods. Nordic Pulp and Paper Research Journal, 2014, 29, 271-279.	0.3	4
22	High- and low-adhesive superhydrophobicity on the liquid flame spray-coated board and paper: structural effects on surface wetting and transition between the low- and high-adhesive states. Colloid and Polymer Science, 2013, 291, 447-455.	1.0	15
23	Compressibility of porous TiO2 nanoparticle coating on paperboard. Nanoscale Research Letters, 2013, 8, 444.	3.1	10
24	Wear resistance of nanoparticle coatings on paperboard. Wear, 2013, 307, 112-118.	1.5	22
25	Wettability conversion on the liquid flame spray generated superhydrophobic TiO2 nanoparticle coating on paper and board by photocatalytic decomposition of spontaneously accumulated carbonaceous overlayer. Cellulose, 2013, 20, 391-408.	2.4	31
26	ToF-SIMS Analysis of UV-Switchable TiO ₂ -Nanoparticle-Coated Paper Surface. Langmuir, 2013, 29, 3780-3790.	1.6	36
27	Nanostructures Increase Water Droplet Adhesion on Hierarchically Rough Superhydrophobic Surfaces. Langmuir, 2012, 28, 3138-3145.	1.6	107
28	Surface chemical characterization of nanoparticle coated paperboard. Applied Surface Science, 2012, 258, 3119-3125.	3.1	25
29	Atmospheric synthesis of superhydrophobic TiO2 nanoparticle deposits in a single step using Liquid Flame Spray. Journal of Aerosol Science, 2012, 52, 57-68.	1.8	34
30	Surface chemical analysis of photocatalytic wettability conversion of TiO2 nanoparticle coating. Surface and Coatings Technology, 2012, 208, 73-79.	2.2	40
31	Adjustable wettability of paperboard by liquid flame spray nanoparticle deposition. Applied Surface Science, 2011, 257, 1911-1917.	3.1	56
32	Adhesion Mechanism of Water Droplets on Hierarchically Rough Superhydrophobic Rose Petal Surface. Journal of Nanomaterials, 2011, 2011, 1-6.	1.5	64
33	Nanoparticle Deposition from Liquid Flame Spray onto Moving Roll-to-Roll Paperboard Material. Aerosol Science and Technology, 2011, 45, 827-837.	1.5	49
34	Development of superhydrophobic coating on paperboard surface using the Liquid Flame Spray. Surface and Coatings Technology, 2010, 205, 436-445.	2.2	108