

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6480260/publications.pdf

FOULTEN

#	Article	IF	CITATIONS
1	Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. Journal of Leukocyte Biology, 2021, 109, 121-141.	1.5	80
2	RIP1 kinase activity promotes steatohepatitis through mediating cell death and inflammation in macrophages. Cell Death and Differentiation, 2021, 28, 1418-1433.	5.0	48
3	RIPK1 activation mediates neuroinflammation and disease progression in multiple sclerosis. Cell Reports, 2021, 35, 109112.	2.9	54
4	Caspase-8 mediates inflammation and disease in rodent malaria. Nature Communications, 2020, 11, 4596.	5.8	11
5	Complement component C3 and the TLR co-receptor CD14 are not involved in angiotensin II induced cardiac remodelling. Biochemical and Biophysical Research Communications, 2020, 523, 867-873.	1.0	3
6	Inhibition of HSP90 and Activation of HSF1 Diminish Macrophage NLRP3 Inflammasome Activity in Alcoholâ€Associated Liver Injury. Alcoholism: Clinical and Experimental Research, 2020, 44, 1300-1311.	1.4	33
7	NLRP3 Inflammasome Promotes Myocardial Remodeling During Diet-Induced Obesity. Frontiers in Immunology, 2019, 10, 1621.	2.2	33
8	Gasdermins and their role in immunity and inflammation. Journal of Experimental Medicine, 2019, 216, 2453-2465.	4.2	187
9	Streptolysin O Induces the Ubiquitination and Degradation of Pro-IL-1β. Journal of Innate Immunity, 2019, 11, 457-468.	1.8	15
10	A Sugar Rush for Innate Immunity. Cell Host and Microbe, 2018, 24, 461-463.	5.1	5
11	Pathogen blockade of TAK1 triggers caspase-8–dependent cleavage of gasdermin D and cell death. Science, 2018, 362, 1064-1069.	6.0	639
12	NLRP3 inflammasome mediates oxidative stress-induced pancreatic islet dysfunction. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E912-E923.	1.8	39
13	Palmitate promotes inflammatory responses and cellular senescence in cardiac fibroblasts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 234-245.	1.2	41
14	Bacterial secretion systems and regulation of inflammasome activation. Journal of Leukocyte Biology, 2017, 101, 165-181.	1.5	22
15	Defects in early cell recruitment contribute to the increased susceptibility to respiratory Klebsiella pneumoniae infection in diabetic mice. Microbes and Infection, 2016, 18, 649-655.	1.0	21
16	Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants. Journal of Biological Chemistry, 2016, 291, 1123-1136.	1.6	149
17	Manipulation of Interleukin-1β and Interleukin-18 Production by Yersinia pestis Effectors YopJ and YopM and Redundant Impact on Virulence. Journal of Biological Chemistry, 2016, 291, 9894-9905.	1.6	33
18	The Yersinia pestis Effector YopM Inhibits Pyrin Inflammasome Activation. PLoS Pathogens, 2016, 12, e1006035.	2.1	98

EGIL LIEN

#	Article	IF	CITATIONS
19	Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L378-L387.	1.3	63
20	A Role for the Adaptor Proteins TRAM and TRIF in Toll-like Receptor 2 Signaling. Journal of Biological Chemistry, 2015, 290, 3209-3222.	1.6	86
21	Mammalian Lipopolysaccharide Receptors Incorporated into the Retroviral Envelope Augment Virus Transmission. Cell Host and Microbe, 2015, 18, 456-462.	5.1	69
22	RNA and β-Hemolysin of Group B Streptococcus Induce Interleukin-1β (IL-1β) by Activating NLRP3 Inflammasomes in Mouse Macrophages. Journal of Biological Chemistry, 2014, 289, 13701-13705.	1.6	62
23	Reduced MyD88 dependency of ISCOMATRIXâ,,¢ adjuvant in a DNA prime-protein boost HIV vaccine. Human Vaccines and Immunotherapeutics, 2014, 10, 1078-1090.	1.4	10
24	Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7391-7396.	3.3	250
25	Contribution of TLR4 and MyD88 for adjuvant monophosphoryl lipid A (MPLA) activity in a DNA prime–protein boost HIV-1 vaccine. Vaccine, 2014, 32, 5049-5056.	1.7	27
26	Inflammasomes and host defenses against bacterial infections. Current Opinion in Microbiology, 2013, 16, 23-31.	2.3	141
27	Serum Cytokine Profiles Associated with Specific Adjuvants Used in a DNA Prime-Protein Boost Vaccination Strategy. PLoS ONE, 2013, 8, e74820.	1.1	18
28	The NLRP12 Inflammasome Recognizes Yersinia pestis. Immunity, 2012, 37, 96-107.	6.6	293
29	NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464, 1357-1361.	13.7	3,130
30	MD-2-mediated Ionic Interactions between Lipid A and TLR4 Are Essential for Receptor Activation. Journal of Biological Chemistry, 2010, 285, 8695-8702.	1.6	82
31	D27-pLpxL, an Avirulent Strain of Yersinia pestis , Primes T Cells That Protect against Pneumonic Plague. Infection and Immunity, 2009, 77, 4295-4304.	1.0	40
32	The Role of Toll-Like Receptor Pathways in the Mechanism of Type 1 Diabetes. Current Molecular Medicine, 2009, 9, 52-68.	0.6	74
33	Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling; role of CD14 and CD36. Journal of Leukocyte Biology, 2008, 84, 280-291.	1.5	128
34	TLR4 enhances resolution of lung inflammation by promoting neutrophil apoptosis. FASEB Journal, 2008, 22, 672.53.	0.2	0
35	Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nature Immunology, 2006, 7, 1066-1073.	7.0	364
36	Lipopolysaccharide and Double-stranded RNA Up-regulate Toll-like Receptor 2 Independently of Myeloid Differentiation Factor 88. Journal of Biological Chemistry, 2004, 279, 39727-39735.	1.6	52

EGIL LIEN

#	Article	IF	CITATIONS
37	Lipopolysaccharide Rapidly Traffics to and from the Golgi Apparatus with the Toll-like Receptor 4-MD-2-CD14 Complex in a Process That Is Distinct from the Initiation of Signal Transduction. Journal of Biological Chemistry, 2002, 277, 47834-47843.	1.6	398
38	Toll-like receptors. Critical Care Medicine, 2002, 30, S1-11.	0.4	37
39	Toll-like receptors. Critical Care Medicine, 2002, 30, S1-S11.	0.4	34
40	Toll-like Receptor 2 Functions as a Pattern Recognition Receptor for Diverse Bacterial Products. Journal of Biological Chemistry, 1999, 274, 33419-33425.	1.6	825
41	Elevated Levels of Serum-Soluble CD14 in Human Immunodeficiency Virus Type 1 (HIV-1) Infection: Correlation to Disease Progression and Clinical Events. Blood, 1998, 92, 2084-2092.	0.6	150
42	Elevated Levels of Serum-Soluble CD14 in Human Immunodeficiency Virus Type 1 (HIV-1) Infection: Correlation to Disease Progression and Clinical Events. Blood, 1998, 92, 2084-2092.	0.6	56
43	Polymorphonuclear granulocytes enhance lipopolysaccharide-induced soluble p75 tumor necrosis factor receptor release from mononuclear cells. European Journal of Immunology, 1995, 25, 2714-2717.	1.6	32