
Scott Q Harper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/64802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meeting report: the 2021 FSHD International Research Congress. Skeletal Muscle, 2022, 12, 1.	4.2	12
2	A translatable RNAi-driven gene therapy silences PMP22/Pmp22 genes and improves neuropathy in CMT1A mice. Journal of Clinical Investigation, 2022, 132, .	8.2	18
3	The <scp>DUX4</scp> protein is a coâ€repressor of the progesterone and glucocorticoid nuclear receptors. FEBS Letters, 2022, 596, 2644-2658.	2.8	4
4	Designed U7 snRNAs inhibitÂDUX4Âexpression and improve FSHD-associated outcomes inÂDUX4Âoverexpressing cells and FSHD patient myotubes. Molecular Therapy - Nucleic Acids, 2021, 23, 476-486.	5.1	17
5	ls Upregulation of Sarcolipin Beneficial or Detrimental to Muscle Function?. Frontiers in Physiology, 2021, 12, 633058.	2.8	22
6	A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Reports, 2021, 35, 108997.	6.4	28
7	Human miRNA miR-675 inhibits DUX4 expression and may be exploited as a potential treatment for Facioscapulohumeral muscular dystrophy. Nature Communications, 2021, 12, 7128.	12.8	19
8	RNAi-Based Gene Therapy Rescues Developmental and Epileptic Encephalopathy in a Genetic Mouse Model. Molecular Therapy, 2020, 28, 1706-1716.	8.2	15
9	Gene therapies for axonal neuropathies: Available strategies, successes to date, and what to target next. Brain Research, 2020, 1732, 146683.	2.2	10
10	RNAscope in situ hybridization-based method for detecting <i>DUX4</i> RNA expression in vitro. Rna, 2019, 25, 1211-1217.	3.5	16
11	Allele-specific RNA interference prevents neuropathy in Charcot-Marie-Tooth disease type 2D mouse models. Journal of Clinical Investigation, 2019, 129, 5568-5583.	8.2	47
12	Pre-clinical Safety and Off-Target Studies to Support Translation of AAV-Mediated RNAi Therapy for FSHD. Molecular Therapy - Methods and Clinical Development, 2018, 8, 121-130.	4.1	44
13	AAV-mediated follistatin gene therapy improves functional outcomes in the TIC-DUX4 mouse model of FSHD. JCI Insight, 2018, 3, .	5.0	57
14	Antisense Oligonucleotides Used to Target the DUX4 mRNA as Therapeutic Approaches in FaciosScapuloHumeral Muscular Dystrophy (FSHD). Genes, 2017, 8, 93.	2.4	51
15	Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation. PLoS ONE, 2016, 11, e0146893.	2.5	26
16	Mouse Dux is myotoxic and shares partial functional homology with its human paralog DUX4. Human Molecular Genetics, 2016, 25, ddw287.	2.9	39
17	Aberrant Splicing in Transgenes Containing Introns, Exons, and V5 Epitopes: Lessons from Developing an FSHD Mouse Model Expressing a D4Z4 Repeat with Flanking Genomic Sequences. PLoS ONE, 2015, 10, e0118813.	2.5	13
18	RNAi-mediated Gene Silencing of Mutant Myotilin Improves Myopathy in LGMD1A Mice. Molecular Therapy - Nucleic Acids, 2014, 3, e160.	5.1	11

SCOTT Q HARPER

#	Article	IF	CITATIONS
19	Molecular dissection of dystrophin identifies the docking site for nNOS. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 387-388.	7.1	22
20	Dose-dependent Toxicity of Humanized Renilla reniformis GFP (hrGFP) Limits Its Utility as a Reporter Gene in Mouse Muscle. Molecular Therapy - Nucleic Acids, 2013, 2, e86.	5.1	16
21	Conditional over-expression of PITX1 causes skeletal muscle dystrophy in mice. Biology Open, 2012, 1, 629-639.	1.2	43
22	RNA Interference Inhibits DUX4-induced Muscle Toxicity In Vivo: Implications for a Targeted FSHD Therapy. Molecular Therapy, 2012, 20, 1417-1423.	8.2	101
23	<i>DUX4</i> , a candidate gene for facioscapulohumeral muscular dystrophy, causes p53â€dependent myopathy in vivo. Annals of Neurology, 2011, 69, 540-552.	5.3	208
24	RNA Interference Improves Myopathic Phenotypes in Mice Over-expressing FSHD Region Gene 1 (FRG1). Molecular Therapy, 2011, 19, 2048-2054.	8.2	37
25	RNAi Therapy for Dominant Muscular Dystrophies and Other Myopathies. , 2010, , 99-115.		6
26	Progress and Challenges in RNA Interference Therapy for Huntington Disease. Archives of Neurology, 2009, 66, 933-8.	4.5	43
27	Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: Implications for the therapeutic development of RNAi. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5868-5873.	7.1	540
28	Lentivirus-Mediated RNA Interference in Mammalian Neurons. Methods in Molecular Biology, 2008, 442, 95-112.	0.9	8
29	Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Molecular Therapy, 2004, 10, 671-678.	8.2	218
30	Spectrin-like repeats from dystrophin and alpha-actinin-2 are not functionally interchangeable. Human Molecular Genetics, 2002, 11, 1807-1815.	2.9	37
31	Modular flexibility of dystrophin: Implications for gene therapy of Duchenne muscular dystrophy. Nature Medicine, 2002, 8, 253-261.	30.7	505