List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6480123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allogeneic Hematopoietic Stem-Cell Transplantation for Sickle Cell Disease. New England Journal of Medicine, 2009, 361, 2309-2317.	13.9	381
2	Nonmyeloablative HLA-Matched Sibling Allogeneic Hematopoietic Stem Cell Transplantation for Severe Sickle Cell Phenotype. JAMA - Journal of the American Medical Association, 2014, 312, 48.	3.8	277
3	Prostaglandin E2 Enhances Human Cord Blood Stem Cell Xenotransplants and Shows Long-Term Safety in Preclinical Nonhuman Primate Transplant Models. Cell Stem Cell, 2011, 8, 445-458.	5.2	250
4	Gene therapy for adenosine deaminase–deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood, 2012, 120, 3635-3646.	0.6	222
5	Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature, 2021, 595, 295-302.	13.7	175
6	Biologic and Clinical Efficacy of LentiGlobin for Sickle Cell Disease. New England Journal of Medicine, 2022, 386, 617-628.	13.9	144
7	Effect of donor type and conditioning regimen intensity on allogeneic transplantation outcomes in patients with sickle cell disease: a retrospective multicentre, cohort study. Lancet Haematology,the, 2019, 6, e585-e596.	2.2	128
8	Allogeneic hematopoietic stem cell transplantation for sickle cell disease: the time is now. Blood, 2011, 118, 1197-1207.	0.6	121
9	Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Advances, 2019, 3, 3379-3392.	2.5	121
10	At least 20% donor myeloid chimerism is necessary to reverse the sickle phenotype after allogeneic HSCT. Blood, 2017, 130, 1946-1948.	0.6	119
11	A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference. Nature Biotechnology, 2006, 24, 89-94.	9.4	114
12	Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: A randomized phase 1 study. PLoS Medicine, 2017, 14, e1002382.	3.9	107
13	Granulocyte colony-stimulating factor (G-CSF) administration in individuals with sickle cell disease: time for a moratorium?. Cytotherapy, 2009, 11, 464-471.	0.3	105
14	Myelodysplastic syndrome unrelated to lentiviral vector in a patient treated with gene therapy for sickle cell disease. Blood Advances, 2020, 4, 2058-2063.	2.5	93
15	Acute Myeloid Leukemia Case after Gene Therapy for Sickle Cell Disease. New England Journal of Medicine, 2022, 386, 138-147.	13.9	86
16	Cyclophosphamide improves engraftment in patients with SCD and severe organ damage who undergo haploidentical PBSCT. Blood Advances, 2017, 1, 652-661.	2.5	84
17	Gene therapy for sickle cell disease: An update. Cytotherapy, 2018, 20, 899-910.	0.3	84
18	Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Science Translational Medicine, 2021, 13, .	5.8	82

JOHN F TISDALE

#	Article	IF	CITATIONS
19	Relationship between Mixed Donor–Recipient Chimerism and Disease Recurrence after Hematopoietic Cell Transplantation for Sickle Cell Disease. Biology of Blood and Marrow Transplantation, 2017, 23, 2178-2183.	2.0	74
20	Mobilization, collection, and processing of peripheral blood stem cells in individuals with sickle cell trait. Blood, 2002, 99, 850-855.	0.6	70
21	Busulfan Produces Efficient Human Cell Engraftment in NOD/LtSz- <i>Scid IL2RÎ³ Null</i> Mice. Stem Cells, 2009, 27, 175-182.	1.4	60
22	Late complications following treatment for severe aplastic anemia (SAA) with high-dose cyclophosphamide (Cy): follow-up of a randomized trial. Blood, 2002, 100, 4668-4670.	0.6	56
23	BCL11A enhancer–edited hematopoietic stem cells persist in rhesus monkeys without toxicity. Journal of Clinical Investigation, 2020, 130, 6677-6687.	3.9	54
24	Development of a Human Immunodeficiency Virus Type 1-Based Lentiviral Vector That Allows Efficient Transduction of both Human and Rhesus Blood Cells. Journal of Virology, 2009, 83, 9854-9862.	1.5	53
25	Mixed haematopoietic chimerism for sickle cell disease prevents intravascular haemolysis. British Journal of Haematology, 2007, 139, 504-507.	1.2	52
26	Bone marrow characterization in sickle cell disease: inflammation and stress erythropoiesis lead to suboptimal CD34 recovery. British Journal of Haematology, 2019, 186, 286-299.	1.2	49
27	β-Globin-Expressing Definitive Erythroid Progenitor Cells Generated from Embryonic and Induced Pluripotent Stem Cell-Derived Sacs. Stem Cells, 2016, 34, 1541-1552.	1.4	48
28	Hydroxyurea-Increased Fetal Hemoglobin Is Associated with Less Organ Damage and Longer Survival in Adults with Sickle Cell Anemia. PLoS ONE, 2015, 10, e0141706.	1.1	43
29	Hematopoietic stem cells from pluripotent stem cells: Clinical potential, challenges, and future perspectives. Stem Cells Translational Medicine, 2020, 9, 1549-1557.	1.6	43
30	Interim Results from a Phase 1/2 Clinical Study of Lentiglobin Gene Therapy for Severe Sickle Cell Disease. Blood, 2016, 128, 1176-1176.	0.6	42
31	Kinetic assay shows that increasing red cell volume could be a treatment for sickle cell disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E689-E696.	3.3	41
32	Nonâ€myeloablative human leukocyte antigenâ€matched related donor transplantation in sickle cell disease: outcomes from three independent centres. British Journal of Haematology, 2021, 192, 761-768.	1.2	41
33	Efficient Generation of \hat{l}^2 -Globin-Expressing Erythroid Cells Using Stromal Cell-Derived Induced Pluripotent Stem Cells from Patients with Sickle Cell Disease. Stem Cells, 2017, 35, 586-596.	1.4	39
34	American Society of Hematology 2021 guidelines for sickle cell disease: stem cell transplantation. Blood Advances, 2021, 5, 3668-3689.	2.5	38
35	5% Dimethyl sulfoxide (DMSO) and pentastarch improves cryopreservation of cord blood cells over 10% DMSO. Transfusion, 2010, 50, 2158-2166.	0.8	37
36	CRISPR/Cas9 for Sickle Cell Disease: Applications, Future Possibilities, and Challenges. Advances in Experimental Medicine and Biology, 2019, 1144, 37-52.	0.8	37

#	Article	IF	CITATIONS
37	Pain and opioid use after reversal of sickle cell disease following <scp>HLA</scp> â€matched sibling haematopoietic stem cell transplant. British Journal of Haematology, 2019, 184, 690-693.	1.2	37
38	Gene therapy for sickle cell disease: moving from the bench to the bedside. Blood, 2021, 138, 932-941.	0.6	37
39	Chicken HS4 Insulators Have Minimal Barrier Function Among Progeny of Human Hematopoietic Cells Transduced With an HIV1-based Lentiviral Vector. Molecular Therapy, 2011, 19, 133-139.	3.7	36
40	Busulfan pharmacokinetics, toxicity, and low-dose conditioning for autologous transplantation of genetically modified hematopoietic stem cells in the rhesus macaque model. Experimental Hematology, 2006, 34, 132-139.	0.2	34
41	Accelerated lymphocyte reconstitution and long-term recovery afterÂtransplantation of lentiviral-transduced rhesus CD34+ cells mobilizedÂbyÂG-CSF and plerixafor. Experimental Hematology, 2011, 39, 795-805.	0.2	34
42	Stem cell transplantation in sickle cell disease: therapeutic potential and challenges faced. Expert Review of Hematology, 2018, 11, 547-565.	1.0	34
43	Aberrant Clonal Hematopoiesis following Lentiviral Vector Transduction of HSPCs in a Rhesus Macaque. Molecular Therapy, 2019, 27, 1074-1086.	3.7	34
44	Low-Dose Radiation Plus Rapamycin Promotes Long-Term Bone Marrow Chimerism. Transplantation, 2005, 80, 1541-1545.	0.5	33
45	High-efficiency Transduction of Rhesus Hematopoietic Repopulating Cells by a Modified HIV1-based Lentiviral Vector. Molecular Therapy, 2012, 20, 1882-1892.	3.7	33
46	POGZ Is Required for Silencing Mouse Embryonic Î ² -like Hemoglobin and Human Fetal Hemoglobin Expression. Cell Reports, 2018, 23, 3236-3248.	2.9	31
47	High-Efficiency Lentiviral Transduction of Human CD34+ Cells in High-Density Culture with Poloxamer and Prostaglandin E2. Molecular Therapy - Methods and Clinical Development, 2019, 13, 187-196.	1.8	31
48	Safe and efficient peripheral blood stem cell collection in patients with sickle cell disease using plerixafor. Haematologica, 2020, 105, e497.	1.7	29
49	Curative options for sickle cell disease: haploidentical stem cell transplantation or gene therapy?. British Journal of Haematology, 2020, 189, 408-423.	1.2	29
50	A pause in gene therapy: Reflecting on the unique challenges of sickle cell disease. Molecular Therapy, 2021, 29, 1355-1356.	3.7	29
51	Transduction of hematopoietic stem cells in humans and in nonhuman primates. Stem Cells, 1997, 15, 135-140.	1.4	28
52	Busulfan Combined with Immunosuppression Allows Efficient Engraftment of Gene-Modified Cells in a Rhesus Macaque Model. Molecular Therapy, 2019, 27, 1586-1596.	3.7	28
53	Low-dose parenteral busulfan provides an extended window for the infusion of hematopoietic stem cells in murine hosts. Experimental Hematology, 2007, 35, 1415-1420.	0.2	26
54	TRIM5α Variations Influence Transduction Efficiency With Lentiviral Vectors in Both Human and Rhesus CD34 + Cells In Vitro and In Vivo. Molecular Therapy, 2014, 22, 348-358.	3.7	26

JOHN F TISDALE

#	Article	IF	CITATIONS
55	Vasopressin stimulates the proliferation and differentiation of red blood cell precursors and improves recovery from anemia. Science Translational Medicine, 2017, 9, .	5.8	26
56	Measuring Deformability and Red Cell Heterogeneity in Blood by Ektacytometry. Journal of Visualized Experiments, 2018, , .	0.2	25
57	Cas9 protein delivery non-integrating lentiviral vectors for gene correction in sickle cell disease. Molecular Therapy - Methods and Clinical Development, 2021, 21, 121-132.	1.8	25
58	Immunohaematological complications in patients with sickle cell disease after haemopoietic progenitor cell transplantation: a prospective, single-centre, observational study. Lancet Haematology,the, 2017, 4, e553-e561.	2.2	24
59	Disease severity impacts plerixafor-mobilized stem cell collection in patients with sickle cell disease. Blood Advances, 2021, 5, 2403-2411.	2.5	24
60	Bone Marrow as a Hematopoietic Stem Cell Source for Gene Therapy in Sickle Cell Disease: Evidence from Rhesus and SCD Patients. Human Gene Therapy Clinical Development, 2017, 28, 136-144.	3.2	23
61	Robust generation of erythroid and multilineage hematopoietic progenitors from human iPSCs using a scalable monolayer culture system. Stem Cell Research, 2019, 41, 101600.	0.3	23
62	Current Results of Lentiglobin Gene Therapy in Patients with Severe Sickle Cell Disease Treated Under a Refined Protocol in the Phase 1 Hgb-206 Study. Blood, 2018, 132, 1026-1026.	0.6	23
63	Safety and feasibility of hematopoietic progenitor stem cell collection by mobilization with plerixafor followed by apheresis vs bone marrow harvest in patients with sickle cell disease in the multiâ€center <scp>HGB</scp> â€206 trial. American Journal of Hematology, 2020, 95, E239-E242.	2.0	22
64	Development of a forward-oriented therapeutic lentiviral vector for hemoglobin disorders. Nature Communications, 2019, 10, 4479.	5.8	21
65	Low-Dose Busulfan Reduces Human CD34+ Cell Doses Required for Engraftment in c-kit Mutant Immunodeficient Mice. Molecular Therapy - Methods and Clinical Development, 2019, 15, 430-437.	1.8	21
66	Integration-specific In Vitro Evaluation of Lentivirally Transduced Rhesus CD34+ Cells Correlates With In Vivo Vector Copy Number. Molecular Therapy - Nucleic Acids, 2013, 2, e122.	2.3	20
67	Biallelic correction of sickle cell diseaseâ€derived induced pluripotent stem cells (iPSCs) confirmed at the protein level through serumâ€free iPSâ€sac/erythroid differentiation. Stem Cells Translational Medicine, 2020, 9, 590-602.	1.6	17
68	Hematopoietic Stem Cell-Targeted Gene-Addition and Gene-Editing Strategies for Î ² -hemoglobinopathies. Cell Stem Cell, 2021, 28, 191-208.	5.2	17
69	Genetic therapies for the first molecular disease. Journal of Clinical Investigation, 2021, 131, .	3.9	17
70	Immunoresponse to Gene-Modified Hematopoietic Stem Cells. Molecular Therapy - Methods and Clinical Development, 2020, 16, 42-49.	1.8	16
71	Resolution of Sickle Cell Disease Manifestations in Patients Treated with Lentiglobin Gene Therapy: Updated Results from the Phase 1/2 Hgb-206 Group C Study. Blood, 2019, 134, 990-990.	0.6	16
72	Successful Plerixafor-Mediated Mobilization, Apheresis, and Lentiviral Vector Transduction of Hematopoietic Stem Cells in Patients with Severe Sickle Cell Disease. Blood, 2017, 130, 990-990.	0.6	16

#	Article	IF	CITATIONS
73	Long-Term Vector Integration Site Analysis Following Retroviral Mediated Gene Transfer to Hematopoietic Stem Cells for the Treatment of HIV Infection. PLoS ONE, 2009, 4, e4211.	1.1	15
74	Discordance in lymphoid tissue recovery following stem cell transplantation in rhesus macaques: an in vivo imaging study. Blood, 2015, 126, 2632-2641.	0.6	15
75	Genome editing strategies for fetal hemoglobin induction in beta-hemoglobinopathies. Human Molecular Genetics, 2020, 29, R100-R106.	1.4	15
76	Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models. Cell Reports Medicine, 2021, 2, 100247.	3.3	15
77	Efficient transduction of human hematopoietic repopulating cells with a chimeric HIV1-based vector including SIV capsid. Experimental Hematology, 2013, 41, 779-788.e1.	0.2	14
78	2019 sickle cell disease guidelines by the American Society of Hematology: methodology, challenges, and innovations. Blood Advances, 2019, 3, 3945-3950.	2.5	14
79	Dietary iron restriction improves markers of disease severity in murine sickle cell anemia. Blood, 2021, 137, 1553-1555.	0.6	14
80	A Single Dose of CD117 Antibody Drug Conjugate Enables Autologous Gene-Modified Hematopoietic Stem Cell Transplant (Gene Therapy) in Nonhuman Primates. Blood, 2019, 134, 610-610.	0.6	14
81	The Assessment of Human Erythroid Output in NOD/SCID Mice Reconstituted with Human Hematopoietic Stem Cells. Cell Transplantation, 2010, 19, 1465-1473.	1.2	13
82	SENP1, but not fetal hemoglobin, differentiates Andean highlanders with chronic mountain sickness from healthy individuals among Andean highlanders. Experimental Hematology, 2016, 44, 483-490.e2.	0.2	13
83	Definitive hematopoietic stem/progenitor cells from human embryonic stem cells through serum/feeder-free organoid-induced differentiation. Stem Cell Research and Therapy, 2020, 11, 493.	2.4	13
84	βT87Q-Globin Gene Therapy Reduces Sickle Hemoglobin Production, Allowing for ExÂVivo Anti-sickling Activity in Human Erythroid Cells. Molecular Therapy - Methods and Clinical Development, 2020, 17, 912-921.	1.8	13
85	CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Molecular Therapy - Methods and Clinical Development, 2021, 23, 276-285.	1.8	13
86	A macaque clonal hematopoiesis model demonstrates expansion of TET2-disrupted clones and utility forÂtesting interventions. Blood, 2022, 140, 1774-1789.	0.6	13
87	Transient <i>In Vivo</i> î²-Globin Production After Lentiviral Gene Transfer to Hematopoietic Stem Cells in the Nonhuman Primate. Human Gene Therapy, 2009, 20, 563-572.	1.4	12
88	Hematopoietic stem cell mobilization with plerixafor in sickle cell disease. Haematologica, 2018, 103, 749-750.	1.7	12
89	Serum-free Erythroid Differentiation for Efficient Genetic Modification and High-Level Adult Hemoglobin Production. Molecular Therapy - Methods and Clinical Development, 2018, 9, 247-256.	1.8	12
90	Transfusion support for matched sibling allogeneic hematopoietic stem cell transplantation (1993–2010): factors that predict intensity and time to transfusion independence. Transfusion, 2019, 59, 303-315.	0.8	12

#	Article	IF	CITATIONS
91	Neurocognitive functioning in symptomatic adults with sickle cell disease: A description and comparison with unaffected siblings. Neuropsychological Rehabilitation, 2020, 30, 1666-1681.	1.0	11
92	Outcomes for Initial Patient Cohorts with up to 33 Months of Follow-up in the Hgb-206 Phase 1 Trial. Blood, 2018, 132, 1080-1080.	0.6	11
93	Severe thrombocytopenia in patients treated with suramin: Evidence for an immune mechanism in one. , 1996, 51, 152-157.		10
94	Total body irradiation must be delivered at high dose for efficient engraftment and tolerance in a rhesus stem cell gene therapy model. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16059.	1.8	10
95	Cene Therapy for Hemoglobinopathies. Hematology/Oncology Clinics of North America, 2022, 36, 769-795.	0.9	9
96	Optimizing haematopoietic stem and progenitor cell apheresis collection from plerixaforâ€mobilized patients with sickle cell disease. British Journal of Haematology, 2022, 198, 740-744.	1.2	8
97	Assessing Costs, Benefits, and Risks in Chronic Disease: Taking the Long View. Biology of Blood and Marrow Transplantation, 2015, 21, 1149-1150.	2.0	7
98	Kinetics of lentiviral vector transduction in human CD34+ cells. Experimental Hematology, 2016, 44, 106-115.	0.2	7
99	Lentiglobin Gene Therapy in Patients with Sickle Cell Disease: Updated Interim Results from Hgb-206. Biology of Blood and Marrow Transplantation, 2019, 25, S64-S65.	2.0	7
100	Exploring the Drivers of Potential Clinical Benefit in Initial Patients Treated in the Hgb-206 Study of Lentiglobin for Sickle Cell Disease (SCD) Gene Therapy. Blood, 2019, 134, 2061-2061.	0.6	7
101	The Relationships between Target Gene Transduction, Engraftment of HSCs and RBC Physiology in Sickle Cell Disease Gene Therapy. Blood, 2019, 134, 206-206.	0.6	7
102	Robust erythroid differentiation system for rhesus hematopoietic progenitor cells allowing preclinical screening of genetic treatment strategies for the hemoglobinopathies. Cytotherapy, 2018, 20, 1278-1287.	0.3	6
103	Vibration Controlled Transient Elastography (Fibroscan®) in sickle cell liver disease ―could we strike while the liver is hard?. British Journal of Haematology, 2019, 187, 117-123.	1.2	6
104	Improvements in haploidentical transplantation for sickle cell disease and β-thalassaemia. Lancet Haematology,the, 2019, 6, e168-e169.	2.2	6
105	Sustained fetal hemoglobin induction in vivo is achieved by <i>BCL11A</i> interference and coexpressed truncated erythropoietin receptor. Science Translational Medicine, 2021, 13, .	5.8	6
106	Towards access for all: 1st Working Group Report for the Global Gene Therapy Initiative (GGTI). Gene Therapy, 2023, 30, 216-221.	2.3	6
107	Durable and Robust Fetal Globin Induction without Anemia in Rhesus Monkeys Following Autologous Hematopoietic Stem Cell Transplant with BCL11A Erythroid Enhancer Editing. Blood, 2019, 134, 4632-4632.	0.6	6
108	Definitive Erythropoiesis from Pluripotent Stem Cells: Recent Advances and Perspectives. Advances in Experimental Medicine and Biology, 2018, 1107, 1-13.	0.8	5

#	Article	IF	CITATIONS
109	Intrabone transplantation of CD34+ cells with optimized delivery does not enhance engraftment in a rhesus macaque model. Blood Advances, 2020, 4, 6148-6156.	2.5	5
110	HCT for Nonmalignant Disorders. Biology of Blood and Marrow Transplantation, 2013, 19, S6-S9.	2.0	4
111	Decitabine Suspends Human CD34+ Cell Differentiation and Proliferation during Lentiviral Transduction. PLoS ONE, 2014, 9, e104022.	1.1	4
112	No Impact of Lentiviral Transduction on Hematopoietic Stem/Progenitor Cell Telomere Length or Gene Expression in the Rhesus Macaque Model. Molecular Therapy, 2014, 22, 52-58.	3.7	4
113	Diagnostic challenges of prolonged post-treatment clearance of Plasmodium nucleic acids in a pre-transplant autosplenectomized patient with sickle cell disease. Malaria Journal, 2018, 17, 23.	0.8	4
114	Ex vivo immunological evaluation of stable mixed chimeric patients after matched related donor allogeneic transplantation in sickle cell disease. Cytotherapy, 2019, 21, 1206-1215.	0.3	4
115	Generation Of Mature Erythroid Cells From Human Embryonic Stem Cell Derived Sacs and Optimization Of Erythroid Cell Generation. Blood, 2013, 122, 2425-2425.	0.6	4
116	RNA Trans-Splicing Targeting Endogenous β-Globin Pre-Messenger RNA in Human Erythroid Cells. Human Gene Therapy Methods, 2017, 28, 91-99.	2.1	3
117	Fetal hemoglobin and F-cell variance in mobilized CD34+ cell-transplanted rhesus monkeys. Experimental Hematology, 2019, 75, 21-25.e1.	0.2	3
118	Multiple Integration Events into Several Putative Oncogenes Was Required To Cause Leukemogenesis in Two Primate Recipients of RCR Contaminated Stem-Cells Blood, 2004, 104, 2102-2102.	0.6	3
119	Increased Rates of Rhabdomyolysis in Male Hematopoietic Cell Transplantation Recipients Taking Sirolimus and Trimethoprim/Sulfamethoxazole. Transplantation and Cellular Therapy, 2021, 27, 1019.e1-1019.e4.	0.6	2
120	Preclinical Evaluation for Engraftment of Gene-Edited CD34+ Cells with a Sickle Cell Disease Mutation in a Rhesus Transplantation Model. Blood, 2019, 134, 609-609.	0.6	2
121	Truncated Erythropoietin Receptors Confer an In Vivo Selective Advantage in Gene-Modified Erythroid Cells Expressing Fetal Hemoglobin Due to BCL11A Interference. Blood, 2019, 134, 2063-2063.	0.6	2
122	Development of a New Generation, Forward-Oriented Therapeutic Vector for Hemoglobin Disorders. Blood, 2016, 128, 1172-1172.	0.6	2
123	At Least 20% Donor Myeloid Chimerism Is Necessary to Reverse the Sickle Phenotype after Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2016, 128, 2483-2483.	0.6	2
124	Characterization of Early Lymphocytes Emerging After Nonmyeloablative Conditioning and Hematopoietic Stem Cell Transplant Supported with Sirolimus. Blood, 2012, 120, 4150-4150.	0.6	2
125	Discordance Between Peripheral Blood and Tissue CD4+ Lymphocyte Reconstitution In Rhesus Monkeys Following Autologous Hematopoietic CD34+ Cell Transplantation: An In Vivo imaging Study. Blood, 2013, 122, 2019-2019.	0.6	2
126	Commentary on Winzeler et al â€~Low arginine vasopressin levels in patients with diabetes insipidus are not associated with anaemia'. Clinical Endocrinology, 2021, 94, 888-890.	1.2	1

#	Article	IF	CITATIONS
127	Cloning and Functional Analysis of the Rhesus Macaque ABCG2 Gene: Forced Expression Confers an SP Phenotype among Hematopoietic Stem Cell Progeny in Vivo Blood, 2004, 104, 3219-3219.	0.6	1
128	Assessment Of The Endocrine Function Of Patients With Sickle Cell Disease After Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2013, 122, 4646-4646.	0.6	1
129	Hematopoietic Progenitor Cell Mobilization In Response To G-CSF Is More Robust In Healthy African American Compared To Caucasian Donors. Blood, 2013, 122, 696-696.	0.6	1
130	Safety of liver biopsy in patients with sickle cell related liver disease: A singleâ€center experience. American Journal of Hematology, 2022, 97, .	2.0	1
131	Public titles of clinical trials should have ethics review. Journal of Clinical Epidemiology, 2015, 68, 1105-1107.	2.4	Ο
132	Allogeneic hematopoietic cell transplants for sickle cell disease. , 0, , 524-530.		0
133	Factors Affecting Allogeneic Peripheral Blood Stem Cell Mobilization in a Large, Ethnically, Diverse Population Blood, 2007, 110, 3283-3283.	0.6	Ο
134	Lentiviral Transduction Efficiency for Human CD34+ Cells Is Affected by TRIM5α Expression and Cell Proliferation. Blood, 2012, 120, 4220-4220.	0.6	0
135	Acquired Hemophilia A in an African-American Male After Stem Cell Transplant for Sickle Cell Disease: Successful Treatment with Recombinant Porcine Factor VIII (OBI-1) and Tolerance Induction with Rituximab and Prednisone. Blood, 2012, 120, 4631-4631.	0.6	Ο
136	Peripheral Blood As a Source Of Cells For Regenerative Medicine Applications In Sickle Cell Disease. Blood, 2013, 122, 2209-2209.	0.6	0
137	CD34+CXCR4(CD184)+ Cells Differentiate Into Myeloid Dendritic Cell Progenitors. Blood, 2013, 122, 4835-4835.	0.6	Ο
138	More Efficient Generation of β-Globin-Expressing Erythroid Cells Using Stromal Cell-Derived Induced Pluripotent Stem Cells. Blood, 2015, 126, 1150-1150.	0.6	0
139	Pain and Opioid Use after Reversal of Sickle Cell Disease Following Hematopoietic Stem Cell Transplant. Blood, 2017, 130, 970-970.	0.6	Ο