Wei Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6479715/publications.pdf Version: 2024-02-01

		567281	713466
32	481	15	21
papers	citations	h-index	g-index
22	22	22	427
32	32	32	437
all docs	docs citations	times ranked	citing authors

WELDEN

#	Article	IF	CITATIONS
1	Improved optical damage threshold graphene Oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers. Carbon, 2019, 144, 737-744.	10.3	44
2	Optical Nonlinearity of ZrS2 and Applications in Fiber Laser. Nanomaterials, 2019, 9, 315.	4.1	41
3	Soliton and bound-state soliton mode-locked fiber laser based on a MoS ₂ /fluorine mica Langmuir–Blodgett film saturable absorber. Photonics Research, 2019, 7, 431.	7.0	37
4	lmprovement of ageing issue in Zn0.4Fe2.1Co2Mn1.5O8 thermistor films. Journal of the European Ceramic Society, 2019, 39, 4189-4193.	5.7	28
5	Effect of sputtering power on structural, cationic distribution and optical properties of Mn2Zn0.25Ni0.75O4 thin films. Applied Surface Science, 2018, 435, 815-821.	6.1	27
6	Structural, optical, and electrical properties of (Mn1.56Co0.96Ni0.48O4)1â^'x(LaMnO3)x composite thin films. Journal of the European Ceramic Society, 2016, 36, 4059-4064.	5.7	25
7	Effects of cation distribution on optical properties of Mn–Co–Ni–O films. Materials Letters, 2015, 153, 162-164.	2.6	23
8	CeO2 Enhanced Ethanol Sensing Performance in a CdS Gas Sensor. Sensors, 2017, 17, 1577.	3.8	21
9	Annealing effects on the optical and electrochemical properties of tantalum pentoxide films. Journal of Advanced Ceramics, 2021, 10, 704-713.	17.4	18
10	Hafnium diselenide as a Q-switcher for fiber laser application. Optical Materials Express, 2019, 9, 4597.	3.0	18
11	Preparation and characterization of nanoscale LiFePO4 cathode materials by a two-step solid-state reaction method. Journal of Materials Science, 2017, 52, 2366-2372.	3.7	17
12	Electromagnetic-wave absorption property of Cr2O3–TiO2 coating with frequency selective surface. Journal of Alloys and Compounds, 2019, 803, 111-117.	5.5	17
13	Molybdenum Carbide Buried in D-Shaped Fibers as a Novel Saturable Absorber Device for Ultrafast Photonics Applications. ACS Applied Materials & Interfaces, 2021, 13, 19128-19137.	8.0	17
14	High B value Mn-Co-Ni spinel films on alumina substrate by RF sputtering. Journal of Materials Science: Materials in Electronics, 2017, 28, 9876-9881.	2.2	16
15	Development of High Sensitivity Humidity Sensor Based on Gray TiO2/SrTiO3 Composite. Sensors, 2017, 17, 1310.	3.8	15
16	Molybdenum Disulfide Film Saturable Absorber Based on Sol–Gel Glass and Spin-Coating Used in High-Power Q-Switched Nd:YAG Laser. ACS Applied Materials & Interfaces, 2020, 12, 9404-9408.	8.0	15
17	Structure, optical, and electrical properties of (Mn 1.56 Co 0.96 Ni 0.48 O 4) 1â^'x (LaMn 0.6 Al 0.4 O 3) x composite thin films. Ceramics International, 2017, 43, 5702-5707.	4.8	12
18	Effect of Ar/O2 ratio on structure and cationic distribution of Mn1.56Co0.96Ni0.48O4±δ spinel films. Applied Surface Science, 2017, 405, 47-51.	6.1	11

Wei Ren

#	Article	IF	CITATIONS
19	Superhydrophobic–Superhydrophilic Hybrid Surface with Highly Ordered Tip-Capped Nanopore Arrays for Surface-Enhanced Raman Scattering Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 37499-37505.	8.0	11
20	Mode-Locked Er-Doped Fiber Laser by Using MoS2/SiO2 Saturable Absorber. Nanoscale Research Letters, 2019, 14, 59.	5.7	10
21	Synthesis of NiMn2O4 thin films via a simple solid-state reaction route. Ceramics International, 2020, 46, 11675-11679.	4.8	9
22	Complex impedance analysis on orientation effect of LaMn0.6Al0.4O3 thin films. Journal of Materials Science: Materials in Electronics, 2015, 26, 369-376.	2.2	7
23	Oxidation mode on charge transfer mechanism in formation of Mn–Co–Ni–O spinel films by RF sputtering. Journal of Materials Science: Materials in Electronics, 2017, 28, 13659-13664.	2.2	7
24	Temperature-induced work function changes in Mn1.56Co0.96Ni0.48O4 thin films. RSC Advances, 2015, 5, 67738-67741.	3.6	6
25	Formation of Highly Textured Zn _{0.2} Ni _{0.8} Mn ₂ O ₄ Thin Films by RF Magnetron Sputtering. ECS Journal of Solid State Science and Technology, 2018, 7, N114-N116.	1.8	6
26	Enhanced microwave absorption and electromagnetic shielding property of (1-x)K0.5Na0.5NbO3 ~ xAl2O3 nano-ceramics. Ceramics International, 2020, 46, 22738-22744.	4.8	6
27	Preparation and characterization of LiFePO 4 ·xLi 3 V 2 (PO 4) 3 composites by two-step solid-state reaction method for lithium-ion batteries. Materials Letters, 2017, 198, 172-175.	2.6	5
28	Photon Absorption Improvement in Reststrahlen Band of Mn1.56Co0.96â^'x Ni0.48Fe x O4 Series Films. Journal of Electronic Materials, 2017, 46, 5349-5355.	2.2	4
29	Synthesis of medium entropy Mn1.56Co0.96Ni0.48O4 films by solid-state reaction. Journal of Solid State Chemistry, 2022, 306, 122742.	2.9	3
30	Effects of in-situ oxidation and annealing on Mn–Co–Ni–Cu–O thin films. Ceramics International, 2022, 48, 8451-8456.	4.8	3
31	Fabrication and assessment of Mn–Co–Ni–Nb–O composite films: structural, optical, and electrical properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 5703-5709.	2.2	2
32	Composition Evolution of Mo–Si–O Films Under Heat Treatment. Transactions of the Indian Institute of Metals, 0, , 1.	1.5	0