
Raffaele Barretta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6479710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the nonlocal bending problem with fractional hereditariness. Meccanica, 2022, 57, 807-820.	1.2	10
2	Finite element method for stress-driven nonlocal beams. Engineering Analysis With Boundary Elements, 2022, 134, 22-34.	2.0	28
3	Analytical Solutions of Viscoelastic Nonlocal Timoshenko Beams. Mathematics, 2022, 10, 477.	1.1	13
4	Multiscale Innovative Materials and Structures (MIMS). Nanomaterials, 2022, 12, 96.	1.9	0
5	Nonlocal integral elasticity for third-order small-scale beams. Acta Mechanica, 2022, 233, 2393-2403.	1.1	4
6	Random vibrations of stress-driven nonlocal beams with external damping. Meccanica, 2021, 56, 1329-1344.	1.2	26
7	Encyclopedia—Open Access MDPI Journal. Encyclopedia, 2021, 1, 3-3.	2.4	0
8	On the dynamics of nano-frames. International Journal of Engineering Science, 2021, 160, 103433.	2.7	30
9	Timoshenko nonlocal strain gradient nanobeams: Variational consistency, exact solutions and carbon nanotube Young moduli. Mechanics of Advanced Materials and Structures, 2021, 28, 1523-1536.	1.5	46
10	Elastostatics of Bernoulli–Euler Beams Resting on Displacement-Driven Nonlocal Foundation. Nanomaterials, 2021, 11, 573.	1.9	15
11	Stress-driven two-phase integral elasticity for Timoshenko curved beams. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2021, 235, 52-63.	0.5	4
12	Dynamics of Stress-Driven Two-Phase Elastic Beams. Nanomaterials, 2021, 11, 1138.	1.9	11
13	On the regularity of curvature fields in stress-driven nonlocal elastic beams. Acta Mechanica, 2021, 232, 2595-2603.	1.1	18
14	Limit behaviour of Eringen's two-phase elastic beams. European Journal of Mechanics, A/Solids, 2021, 89, 104315.	2.1	16
15	Buckling loads of nano-beams in stress-driven nonlocal elasticity. Mechanics of Advanced Materials and Structures, 2020, 27, 869-875.	1.5	83
16	On torsion of nonlocal Lam strain gradient FG elastic beams. Composite Structures, 2020, 233, 111550.	3.1	29
17	A consistent variational formulation of Bishop nonlocal rods. Continuum Mechanics and Thermodynamics, 2020, 32, 1311-1323.	1.4	18
18	Nonlocal strain gradient torsion of elastic beams: variational formulation and constitutive boundary conditions. Archive of Applied Mechanics, 2020, 90, 691-706.	1.2	47

#	Article	IF	CITATIONS
19	On thermomechanics of multilayered beams. International Journal of Engineering Science, 2020, 155, 103364.	2.7	25
20	Nonlocal Mechanical Behavior of Layered Nanobeams. Symmetry, 2020, 12, 717.	1.1	7
21	Variationally consistent dynamics of nonlocal gradient elastic beams. International Journal of Engineering Science, 2020, 149, 103220.	2.7	62
22	Stress-Driven Approach for Stochastic Analysis of Noisy Nonlocal Beam. Lecture Notes in Mechanical Engineering, 2020, , 1670-1686.	0.3	0
23	A stress-driven local-nonlocal mixture model for Timoshenko nano-beams. Composites Part B: Engineering, 2019, 164, 590-598.	5.9	75
24	On nonlocal mechanics of curved elastic beams. International Journal of Engineering Science, 2019, 144, 103140.	2.7	53
25	Variational nonlocal gradient elasticity for nano-beams. International Journal of Engineering Science, 2019, 143, 73-91.	2.7	84
26	Nonlocal integral thermoelasticity: A thermodynamic framework for functionally graded beams. Composite Structures, 2019, 225, 111104.	3.1	27
27	Aifantis versus Lam strain gradient models of Bishop elastic rods. Acta Mechanica, 2019, 230, 2799-2812.	1.1	38
28	Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. International Journal of Engineering Science, 2019, 136, 38-52.	2.7	93
29	Modified Nonlocal Strain Gradient Elasticity for Nano-Rods and Application to Carbon Nanotubes. Applied Sciences (Switzerland), 2019, 9, 514.	1.3	39
30	Nonlocal strain gradient exact solutions for functionally graded inflected nano-beams. Composites Part B: Engineering, 2019, 164, 667-674.	5.9	68
31	Iterative methods for nonlocal elasticity problems. Continuum Mechanics and Thermodynamics, 2019, 31, 669-689.	1.4	16
32	Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mechanics of Advanced Materials and Structures, 2019, 26, 1307-1315.	1.5	103
33	Stress-driven two-phase integral elasticity for torsion of nano-beams. Composites Part B: Engineering, 2018, 145, 62-69.	5.9	65
34	Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. International Journal of Engineering Science, 2018, 126, 53-67.	2.7	121
35	Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Continuum Mechanics and Thermodynamics, 2018, 30, 641-655.	1.4	75
36	Exact solutions of inflected functionally graded nano-beams in integral elasticity. Composites Part B: Engineering, 2018, 142, 273-286.	5.9	97

#	Article	IF	CITATIONS
37	On the role of control windows in continuum dynamics. Acta Mechanica, 2018, 229, 1849-1868.	1.1	2
38	Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. European Journal of Mechanics, A/Solids, 2018, 72, 275-286.	2.1	94
39	Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 13-30.	1.3	93
40	A geometric rationale for invariance, covariance and constitutive relations. Continuum Mechanics and Thermodynamics, 2018, 30, 175-194.	1.4	7
41	Stress-driven integral elastic theory for torsion of nano-beams. Mechanics Research Communications, 2018, 87, 35-41.	1.0	82
42	Free vibrations of elastic beams by modified nonlocal strain gradient theory. International Journal of Engineering Science, 2018, 133, 99-108.	2.7	122
43	Nonlocal inflected nano-beams: A stress-driven approach of bi-Helmholtz type. Composite Structures, 2018, 200, 239-245.	3.1	71
44	Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams. International Journal of Engineering Science, 2018, 130, 187-198.	2.7	136
45	Free vibrations of FG elastic Timoshenko nano-beams by strain gradient and stress-driven nonlocal models. Composites Part B: Engineering, 2018, 154, 20-32.	5.9	85
46	Modulated Linear Dynamics of Functionally Graded Nanobeams With Nonlocal and Gradient Elasticity. , 2018, , 293-323.		2
47	Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Composites Part B: Engineering, 2017, 114, 184-188.	5.9	248
48	Application of gradient elasticity to armchair carbon nanotubes: Size effects and constitutive parameters assessment. European Journal of Mechanics, A/Solids, 2017, 65, 1-13.	2.1	68
49	Experimental evaluations and modeling of the tensile behavior of polypropylene/single-walled carbon nanotubes fibers. Composite Structures, 2017, 174, 12-18.	3.1	70
50	Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model. Composites Part B: Engineering, 2017, 123, 105-111.	5.9	202
51	Nonlocal elasticity in nanobeams: the stress-driven integral model. International Journal of Engineering Science, 2017, 115, 14-27.	2.7	308
52	On nonlocal integral models for elastic nano-beams. International Journal of Mechanical Sciences, 2017, 131-132, 490-499.	3.6	135
53	Nano-beams under torsion: a stress-driven nonlocal approach. PSU Research Review, 2017, 1, 164-169.	1.3	10
54	Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences, 2017, 121, 151-156.	3.6	403

#	Article	IF	CITATIONS
55	Solid–fluid interaction: a continuum mechanics assessment. Acta Mechanica, 2017, 228, 851-869.	1.1	2
56	A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation. Composites Part B: Engineering, 2017, 108, 315-324.	5.9	83
57	Micromorphic continua: non-redundant formulations. Continuum Mechanics and Thermodynamics, 2016, 28, 1659-1670.	1.4	42
58	Application of an enhanced version of the Eringen differential model to nanotechnology. Composites Part B: Engineering, 2016, 96, 274-280.	5.9	98
59	Comment on the paper "Exact solution of Eringen's nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams―by Meral Tuna & Mesut Kirca. International Journal of Engineering Science, 2016, 109, 240-242.	2.7	95
60	Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation. Composites Part B: Engineering, 2016, 100, 208-219.	5.9	192
61	An Eringen-like model for Timoshenko nanobeams. Composite Structures, 2016, 139, 104-110.	3.1	62
62	On functionally graded Timoshenko nonisothermal nanobeams. Composite Structures, 2016, 135, 286-296.	3.1	53
63	A gradient elasticity model of Bernoulli–Euler nanobeams in non-isothermal environments. European Journal of Mechanics, A/Solids, 2016, 55, 243-255.	2.1	51
64	A higher-order Eringen model for Bernoulli–Euler nanobeams. Archive of Applied Mechanics, 2016, 86, 483-495.	1.2	46
65	A Fully Gradient Model for Euler-Bernoulli Nanobeams. Mathematical Problems in Engineering, 2015, 2015, 2015, 1-8.	0.6	51
66	Flexural properties of multi-wall carbon nanotube/polypropylene composites: Experimental investigation and nonlocal modeling. Composite Structures, 2015, 131, 282-289.	3.1	62
67	On torsion of random composite beams. Composite Structures, 2015, 132, 915-922.	3.1	58
68	Torsion of functionally graded nonlocal viscoelastic circular nanobeams. Composites Part B: Engineering, 2015, 72, 217-222.	5.9	86
69	A gradient model for torsion of nanobeams. Comptes Rendus - Mecanique, 2015, 343, 289-300.	2.1	12
70	A gradient Eringen model for functionally graded nanorods. Composite Structures, 2015, 131, 1124-1131.	3.1	67
71	Variational formulations for functionally graded nonlocal Bernoulli–Euler nanobeams. Composite Structures, 2015, 129, 80-89.	3.1	79
72	Some closed-form solutions of functionally graded beams undergoing nonuniform torsion. Composite Structures, 2015, 123, 132-136.	3.1	54

#	Article	IF	CITATIONS
73	Analogies between Kirchhoff plates and functionally graded Saint-Venant beams under torsion. Continuum Mechanics and Thermodynamics, 2015, 27, 499-505.	1.4	62
74	Analogies between nonlocal and local Bernoulli–Euler nanobeams. Archive of Applied Mechanics, 2015, 85, 89-99.	1.2	53
75	Some analytical solutions of functionally graded Kirchhoff plates. Composites Part B: Engineering, 2015, 68, 266-269.	5.9	63
76	Geometric continuum mechanics. Meccanica, 2014, 49, 111-133.	1.2	25
77	Analogies between Kirchhoff plates and Saint-Venant beams under flexure. Acta Mechanica, 2014, 225, 2075-2083.	1.1	36
78	Small-scale effects in nanorods. Acta Mechanica, 2014, 225, 1945-1953.	1.1	43
79	Rate formulations in nonlinear continuum mechanics. Acta Mechanica, 2014, 225, 1625-1648.	1.1	7
80	Exact solutions of isotropic viscoelastic functionally graded Kirchhoff plates. Composite Structures, 2014, 118, 448-454.	3.1	61
81	The geometry of nonlinear elasticity. Acta Mechanica, 2014, 225, 3199-3235.	1.1	17
82	A new nonlocal bending model for Euler–Bernoulli nanobeams. Mechanics Research Communications, 2014, 62, 25-30.	1.0	51
83	A gradient model for Timoshenko nanobeams. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 62, 1-9.	1.3	37
84	On stress function in Saint-Venant beams. Meccanica, 2013, 48, 1811-1816.	1.2	11
85	Analogies between Kirchhoff plates and Saint-Venant beams under torsion. Acta Mechanica, 2013, 224, 2955-2964.	1.1	39
86	On Euler's stretching formula in continuum mechanics. Acta Mechanica, 2013, 224, 211-230.	1.1	15
87	On the shear centre in Saint-Venant beam theory. Mechanics Research Communications, 2013, 52, 52-56.	1.0	8
88	On CesÃro-Volterra Method in Orthotropic Saint-Venant Beam. Journal of Elasticity, 2013, 112, 233-253.	0.9	37
89	Geometric constitutive theory and frame invariance. International Journal of Non-Linear Mechanics, 2013, 51, 75-86.	1.4	17
90	A Nonlocal Model for Carbon Nanotubes under Axial Loads. Advances in Materials Science and Engineering, 2013, 2013, 1-6.	1.0	46

#	Article	IF	CITATIONS
91	On the relative position of twist and shear centres in the orthotropic and fiberwise homogeneous Saint–Venant beam theory. International Journal of Solids and Structures, 2012, 49, 3038-3046.	1.3	43
92	On torsion and shear of Saint-Venant beams. European Journal of Mechanics, A/Solids, 2012, 35, 47-60.	2.1	57
93	Covariant hypo-elasticity. European Journal of Mechanics, A/Solids, 2011, 30, 1012-1023.	2.1	16
94	Variational Formulation of the First Principle of Continuum Thermodynamics. Continuum Mechanics and Thermodynamics, 2010, 22, 177-187.	1.4	30
95	Algorithmic tangent stiffness in elastoplasticity and elastoviscoplasticity: A geometric insight. Mechanics Research Communications, 2010, 37, 289-292.	1.0	18
96	Shear stresses in elastic beams: an intrinsic approach. European Journal of Mechanics, A/Solids, 2010, 29, 400-409.	2.1	15
97	On continuum dynamics. Journal of Mathematical Physics, 2009, 50, 102903.	0.5	9
98	On the general form of the law of dynamics. International Journal of Non-Linear Mechanics, 2009, 44, 689-695.	1.4	9
99	On Maupertuis principle in dynamics. Reports on Mathematical Physics, 2009, 63, 331-346.	0.4	16
100	Nonlinear shell theory: a duality approach. Journal of Mechanics of Materials and Structures, 2007, 2, 1207-1230.	0.4	11
101	On the theory of material inhomogeneities. Mechanics Research Communications, 2006, 33, 758-763.	1.0	4
102	Dynamic behavior of nanobeams under axial loads: Integral elasticity modeling and sizeâ€dependent eigenfrequencies assessment. Mathematical Methods in the Applied Sciences, 0, , .	1.2	5
103	Elasticity problems of beams on reaction-driven nonlocal foundation. Archive of Applied Mechanics, 0, , .	1.2	4