Men Xia

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6479351/men-xia-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

29 305 10 16 g-index

42 487 8 3.31 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
29	Large Daytime Molecular Chlorine Missing Source at a Suburban Site in East China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2022 , 127,	4.4	1
28	Photodissociation of particulate nitrate as a source of daytime tropospheric Cl <i>Nature Communications</i> , 2022 , 13, 939	17.4	2
27	Nitrous acid in the polluted coastal atmosphere of the South China Sea: Ship emissions, budgets, and impacts <i>Science of the Total Environment</i> , 2022 , 153692	10.2	
26	Secondary Formation and Impacts of Gaseous Nitro-Phenolic Compounds in the Continental Outflow Observed at a Background Site in South China. <i>Environmental Science & Environmental Science & Environm</i>	10.3	2
25	Investigating the sources of atmospheric nitrous acid (HONO) in the megacity of Beijing, China <i>Science of the Total Environment</i> , 2021 , 812, 152270	10.2	1
24	Winter ClNO₂ formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 15985-16000	6.8	2
23	An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality. <i>National Science Review</i> , 2021 , 8, nwaa304	10.8	10
22	Impact of reduced anthropogenic emissions during COVID-19 on air quality in India. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 4025-4037	6.8	12
21	Unexpected enhancement of ozone exposure and health risks during National Day in China. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 10347-10356	6.8	3
20	Observations by Ground-Based MAX-DOAS of the Vertical Characters of Winter Pollution and the Influencing Factors of HONO Generation in Shanghai, China. <i>Remote Sensing</i> , 2021 , 13, 3518	5	1
19	Heterogeneous N₂O₅ reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake parameters. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 4367-4378	6.8	15
18	The impact of sea-salt chloride on ozone through heterogeneous reaction with N2O5 in a coastal region of south China. <i>Atmospheric Environment</i> , 2020 , 236, 117604	5.3	6
17	Significant production of ClNO₂ and possible source of Cl₂5</sub> uptake at a suburban site in eastern China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6147-6158	6.8	8
16	Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical mountain site in Hong Kong SAR. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 391-407	6.8	8
15	Photoinduced Production of Chlorine Molecules from Titanium Dioxide Surfaces Containing Chloride. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 70-75	11	8
14	Vehicle emissions in a middle-sized city of China: Current status and future trends. <i>Environment International</i> , 2020 , 137, 105514	12.9	21
13	The significant contribution of HONO to secondary pollutants during a severe winter pollution event in southern China. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1-14	6.8	61

LIST OF PUBLICATIONS

12	Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical mountain site in Hong Kong 2019 ,		1
11	Heterogeneous Uptake of N2O5 in Sand Dust and Urban Aerosols Observed during the Dry Season in Beijing. <i>Atmosphere</i> , 2019 , 10, 204	2.7	13
10	Characterization of organic aerosols and their precursors in southern China during a severe haze episode in January 2017. <i>Science of the Total Environment</i> , 2019 , 691, 101-111	10.2	16
9	Heterogeneous N₂O₅ reactions on atmospheric aerosols at four Chinese sites: Improving model representation of uptake parameters 2019 ,		1
8	Abundance and origin of fine particulate chloride in continental China. <i>Science of the Total Environment</i> , 2018 , 624, 1041-1051	10.2	34
7	Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 17515-17527	6.8	41
6	An in situ flow tube system for direct measurement of N₂O₅ heterogeneous uptake coefficients in polluted environments. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 5643-5655	4	3
5	Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China 2018 ,		1
4	Pathways of conversion of nitrogen oxides by nano TiO2 incorporated in cement-based materials. <i>Building and Environment</i> , 2018 , 144, 412-418	6.5	23
3	Impact of reduced anthropogenic emissions during COVID-19 on air quality in India		2
2	Significant production of ClNO2 and possible source of Cl2 from N2O5 uptake at a suburban site in eastern China		3
1	An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality		3