Stephen D Eckermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6479272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Statistical Parameter Estimation for Observation Error Modelling: Application to Meteor Radars. , 2022, , 185-213.		2
2	Full-wave anelastic and compressible Fourier methods for gravity waves in the thermosphere. Wave Motion, 2022, 110, 102894.	2.0	1
3	Stratospheric Gravity Waves Excited by a Propagating Rossby Wave Train—A DEEPWAVE Case Study. Journals of the Atmospheric Sciences, 2022, 79, 567-591.	1.7	5
4	Ensemble-Based Gravity Wave Parameter Retrieval for Numerical Weather Prediction. Journals of the Atmospheric Sciences, 2022, 79, 621-648.	1.7	0
5	Determining Gravity Wave Sources and Propagation in the Southern Hemisphere by Rayâ€Tracing AIRS Measurements. Geophysical Research Letters, 2021, 48, e2020GL088621.	4.0	16
6	A single-mode approximation for gravity waves in the thermosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 224, 105749.	1.6	1
7	Mesospheric Bore Evolution and Instability Dynamics Observed in PMC Turbo Imaging and Rayleigh Lidar Profiling Over Northeastern Canada on 13 July 2018. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032037.	3.3	17
8	Compatibility Conditions, Complex Frequency, and Complex Vertical Wave Number for Models of Gravity Waves in the Thermosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028011.	2.4	3
9	Gravity Wave Breaking and Vortex Ring Formation Observed by PMC Turbo. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033038.	3.3	5
10	Stratospheric Gravity Wave Products from Satellite Infrared Nadir Radiances in the Planning, Execution, and Validation of Aircraft Measurements during DEEPWAVE. Journal of Applied Meteorology and Climatology, 2019, 58, 2049-2075.	1.5	8
11	Largeâ€Amplitude Mountain Waves in the Mesosphere Observed on 21 June 2014 During DEEPWAVE: 1. Wave Development, Scales, Momentum Fluxes, and Environmental Sensitivity. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10364-10384.	3.3	21
12	Optimization of Gravity Wave Source Parameters for Improved Seasonal Prediction of the Quasi-Biennial Oscillation. Journals of the Atmospheric Sciences, 2019, 76, 2941-2962.	1.7	3
13	A causality-preserving Fourier method for gravity waves in a viscous, thermally diffusive, and vertically varying atmosphere. Wave Motion, 2019, 88, 226-256.	2.0	7
14	Regional Distribution of Mesospheric Small cale Gravity Waves During DEEPWAVE. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7069-7081.	3.3	12
15	Stratospheric Trailing Gravity Waves from New Zealand. Journals of the Atmospheric Sciences, 2019, 76, 1565-1586.	1.7	21
16	Largeâ€Amplitude Mountain Waves in the Mesosphere Observed on 21 June 2014 During DEEPWAVE: 2. Nonlinear Dynamics, Wave Breaking, and Instabilities. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10006-10032.	3.3	15
17	High-Altitude (O–100 km) Global Atmospheric Reanalysis System: Description and Application to the 2014 Austral Winter of the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Monthly Weather Review, 2018, 146, 2639-2666.	1.4	47
18	Largeâ€Amplitude Mountain Waves in the Mesosphere Accompanying Weak Crossâ€Mountain Flow During DEEPWAVE Research Flight RF22. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9992.	3.3	26

#	Article	IF	CITATIONS
19	Momentum Flux Spectra of a Mountain Wave Event Over New Zealand. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9980-9991.	3.3	15
20	Local and Remote Planetary Wave Effects on Polar Mesospheric Clouds in the Northern Hemisphere in 2014. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5149-5162.	3.3	28
21	Atmospheric Conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Monthly Weather Review, 2017, 145, 4249-4275.	1.4	24
22	Horizontal propagation of largeâ€amplitude mountain waves into the polar night jet. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1423-1436.	3.3	49
23	First tomographic observations of gravity waves by the infrared limb imager GLORIA. Atmospheric Chemistry and Physics, 2017, 17, 14937-14953.	4.9	51
24	A stationary phase solution for mountain waves with application to mesospheric mountain waves generated by Auckland Island. Journal of Geophysical Research D: Atmospheres, 2017, 122, 699-711.	3.3	18
25	Examining the Predictability of the Stratospheric Sudden Warming of January 2013 Using Multiple NWP Systems. Monthly Weather Review, 2016, 144, 1935-1960.	1.4	62
26	Largeâ€amplitude mesospheric response to an orographic wave generated over the Southern Ocean Auckland Islands (50.7ŰS) during the DEEPWAVE project. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1431-1441.	3.3	33
27	Dynamics of Orographic Gravity Waves Observed in the Mesosphere over the Auckland Islands during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Journals of the Atmospheric Sciences, 2016, 73, 3855-3876.	1.7	37
28	The Midlatitude Lower-Stratospheric Mountain Wave "Valve Layer― Journals of the Atmospheric Sciences, 2016, 73, 5081-5100.	1.7	39
29	Comparison of simulated and observed convective gravity waves. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,474.	3.3	15
30	Tuning of a convective gravity wave source scheme based on HIRDLS observations. Atmospheric Chemistry and Physics, 2016, 16, 7335-7356.	4.9	33
31	Generalized stationary phase approximations for mountain waves. Physics of Fluids, 2016, 28, 046601.	4.0	1
32	The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An Airborne and Ground-Based Exploration of Gravity Wave Propagation and Effects from Their Sources throughout the Lower and Middle Atmosphere. Bulletin of the American Meteorological Society, 2016, 97, 425-453.	3.3	148
33	The predictability of the extratropical stratosphere on monthly timeâ€scales and its impact on the skill of tropospheric forecasts. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 987-1003.	2.7	162
34	Integral expressions for mountain wave steepness. Wave Motion, 2015, 56, 1-13.	2.0	6
35	Effects of Horizontal Geometrical Spreading on the Parameterization of Orographic Gravity Wave Drag. Part II: Analytical Solutions. Journals of the Atmospheric Sciences, 2015, 72, 2348-2365.	1.7	8
36	Effects of Horizontal Geometrical Spreading on the Parameterization of Orographic Gravity Wave Drag. Part I: Numerical Transform Solutions. Journals of the Atmospheric Sciences, 2015, 72, 2330-2347.	1.7	25

#	Article	IF	CITATIONS
37	A comprehensive observational filter for satellite infrared limb sounding of gravity waves. Atmospheric Measurement Techniques, 2015, 8, 1491-1517.	3.1	36
38	Generation of a Quasi-Biennial Oscillation in an NWP Model Using a Stochastic Gravity Wave Drag Parameterization. Monthly Weather Review, 2015, 143, 2121-2147.	1.4	9
39	Solitary Waves and Undular Bores in a Mesosphere Duct. Journals of the Atmospheric Sciences, 2015, 72, 4412-4422.	1.7	5
40	The Navy Global Environmental Model. Oceanography, 2014, 27, 116-125.	1.0	237
41	Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere. Annales Geophysicae, 2014, 32, 1373-1394.	1.6	14
42	What Is the Source of the Stratospheric Gravity Wave Belt in Austral Winter?. Journals of the Atmospheric Sciences, 2014, 71, 1583-1592.	1.7	69
43	Stratospheric Analysis and Forecast Errors Using Hybrid and Sigma Coordinates. Monthly Weather Review, 2014, 142, 476-485.	1.4	9
44	The Partial Reflection of Tsunami-Generated Gravity Waves. Journals of the Atmospheric Sciences, 2014, 71, 3416-3426.	1.7	17
45	Differences in gravity wave drag between realistic oblique and assumed vertical propagation. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,081.	3.3	51
46	Characteristics of gravity waves resolved by ECMWF. Atmospheric Chemistry and Physics, 2014, 14, 10483-10508.	4.9	78
47	A Modeling Study of Stratospheric Waves over the Southern Andes and Drake Passage. Journals of the Atmospheric Sciences, 2013, 70, 1668-1689.	1.7	33
48	Evaluation of SSMIS Upper Atmosphere Sounding Channels for High-Altitude Data Assimilation. Monthly Weather Review, 2013, 141, 3314-3330.	1.4	37
49	Gravity wave variances and propagation derived from AIRS radiances. Atmospheric Chemistry and Physics, 2012, 12, 1701-1720.	4.9	84
50	Analysis of a rayâ€ŧracing model for gravity waves generated by tropospheric convection. Journal of Geophysical Research, 2012, 117, .	3.3	3
51	Satellite detection of orographic gravityâ€wave activity in the winter subtropical stratosphere over Australia and Africa. Geophysical Research Letters, 2012, 39, .	4.0	12
52	Mesospheric Precursors to the Major Stratospheric Sudden Warming of 2009: Validation and Dynamical Attribution Using a Ground-to-Edge-of-Space Data Assimilation System. Journal of Advances in Modeling Earth Systems, 2011, 3, .	3.8	37
53	Analysis of gravity waves structures visible in noctilucent cloud images. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 2082-2090.	1.6	37
54	Scale-dependent infrared radiative damping rates on Mars and their role in the deposition of gravity-wave momentum flux. Icarus, 2011, 211, 429-442.	2.5	30

#	Article	IF	CITATIONS
55	Explicitly Stochastic Parameterization of Nonorographic Gravity Wave Drag. Journals of the Atmospheric Sciences, 2011, 68, 1749-1765.	1.7	48
56	A coupled mesoscale-model Fourier-method for idealized mountain-wave simulations over Hawaii. Meteorology and Atmospheric Physics, 2010, 108, 71-81.	2.0	2
57	Momentum Fluxes of Gravity Waves Generated by Variable Froude Number Flow over Three-Dimensional Obstacles. Journals of the Atmospheric Sciences, 2010, 67, 2260-2278.	1.7	28
58	Seasonal variation of the quasi 5 day planetary wave: Causes and consequences for polar mesospheric cloud variability in 2007. Journal of Geophysical Research, 2010, 115, .	3.3	47
59	Tidally induced variations of polar mesospheric cloud altitudes and ice water content using a data assimilation system. Journal of Geophysical Research, 2010, 115, .	3.3	45
60	Amplification of the quasiâ€ŧwo day wave through nonlinear interaction with the migrating diurnal tide. Geophysical Research Letters, 2010, 37, .	4.0	60
61	Case studies of the mesospheric response to recent minor, major, and extended stratospheric warmings. Journal of Geophysical Research, 2010, 115, .	3.3	114
62	Practical Application of Two-Turning-Point Theory to Mountain-Wave Transmission through a Wind Jet. Journals of the Atmospheric Sciences, 2009, 66, 481-494.	1.7	12
63	Planetary Wave Breaking and Tropospheric Forcing as Seen in the Stratospheric Sudden Warming of 2006. Journals of the Atmospheric Sciences, 2009, 66, 495-507.	1.7	61
64	Hybrid Ïf–p Coordinate Choices for a Global Model. Monthly Weather Review, 2009, 137, 224-245.	1.4	37
65	High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 531-551.	1.6	106
66	Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophysical Research Letters, 2009, 36, .	4.0	91
67	Global ray tracing simulations of the SABER gravity wave climatology. Journal of Geophysical Research, 2009, 114, .	3.3	120
68	Antarctic NAT PSC belt of June 2003: Observational validation of the mountain wave seeding hypothesis. Geophysical Research Letters, 2009, 36, .	4.0	56
69	Properties of the average distribution of equatorial Kelvin waves investigated with the GROGRAT ray tracer. Atmospheric Chemistry and Physics, 2009, 9, 7973-7995.	4.9	12
70	Transparency of the atmosphere to short horizontal wavelength gravity waves. Journal of Geophysical Research, 2008, 113, .	3.3	105
71	Mesoscale Model Initialization of the Fourier Method for Mountain Waves. Journals of the Atmospheric Sciences, 2008, 65, 2749-2756.	1.7	5
72	Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation. Journals of the Atmospheric Sciences, 2008, 65, 3695-3718.	1.7	127

#	Article	IF	CITATIONS
73	Assimilation of stratospheric and mesospheric temperatures from MLS and SABER into a global NWP model. Atmospheric Chemistry and Physics, 2008, 8, 6103-6116.	4.9	60
74	Effects of model chemistry and data biases on stratospheric ozone assimilation. Atmospheric Chemistry and Physics, 2007, 7, 2917-2935.	4.9	16
75	Atmospheric effects of the total solar eclipse of 4 December 2002 simulated with a highâ€altitude global model. Journal of Geophysical Research, 2007, 112, .	3.3	41
76	On recent interannual variability of the Arctic winter mesosphere: Implications for tracer descent. Geophysical Research Letters, 2007, 34, .	4.0	122
77	A threeâ€dimensional mountain wave imaged in satellite radiance throughout the stratosphere: Evidence of the effects of directional wind shear. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1959-1975.	2.7	38
78	Parameterisation of orographic cloud dynamics in a GCM. Climate Dynamics, 2007, 28, 581-597.	3.8	19
79	Fourier-Ray Modeling of Short-Wavelength Trapped Lee Waves Observed in Infrared Satellite Imagery near Jan Mayen. Monthly Weather Review, 2006, 134, 2830-2848.	1.4	21
80	Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 1: Simple forward model. Atmospheric Chemistry and Physics, 2006, 6, 3325-3341.	4.9	11
81	Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 2: Validation case study. Atmospheric Chemistry and Physics, 2006, 6, 3343-3362.	4.9	50
82	CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models. Atmospheric Chemistry and Physics, 2006, 6, 4943-4972.	4.9	64
83	MIPAS detects Antarctic stratospheric belt of NAT PSCs caused by mountain waves. Atmospheric Chemistry and Physics, 2006, 6, 1221-1230.	4.9	102
84	NOGAPS-ALPHA Simulations of the 2002 Southern Hemisphere Stratospheric Major Warming. Monthly Weather Review, 2006, 134, 498-518.	1.4	43
85	Fourier-Ray Modeling of Transient Trapped Lee Waves. Monthly Weather Review, 2006, 134, 2849-2856.	1.4	20
86	Mountain Wave–Induced Polar Stratospheric Cloud Forecasts for Aircraft Science Flights during SOLVE/THESEO 2000. Weather and Forecasting, 2006, 21, 42-68.	1.4	38
87	Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques. Advances in Space Research, 2006, 37, 2269-2277.	2.6	118
88	Tropopause to mesopause gravity waves in August: Measurement and modeling. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 1730-1751.	1.6	77
89	Inter-annual variation of gravity waves in the Arctic and Antarctic winter middle atmosphere. Advances in Space Research, 2006, 38, 2418-2423.	2.6	18
90	Influence of mountain waves and NAT nucleation mechanisms on polar stratospheric cloud formation at local and synoptic scales during the 1999-2000 Arctic winter. Atmospheric Chemistry and Physics, 2005, 5, 739-753.	4.9	10

#	Article	IF	CITATIONS
91	Seasonal variation of gravity wave sources from satellite observation. Advances in Space Research, 2005, 35, 1925-1932.	2.6	36
92	Large nitric acid trihydrate particles and denitrification caused by mountain waves in the Arctic stratosphere. Journal of Geophysical Research, 2005, 110, .	3.3	28
93	Modeling the August 2002 minor warming event. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	38
94	RAY METHODS FOR INTERNAL WAVES IN THE ATMOSPHERE AND OCEAN. Annual Review of Fluid Mechanics, 2004, 36, 233-253.	25.0	46
95	Concerning the upper stratospheric gravity wave and mesospheric cloud relationship over Sondrestrom, Greenland. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66, 229-240.	1.6	21
96	Gravity waves and mesospheric clouds in the summer middle atmosphere: A comparison of lidar measurements and ray modeling of gravity waves over Sondrestrom, Greenland. Journal of Geophysical Research, 2004, 109, .	3.3	37
97	Geographical distribution and interseasonal variability of tropical deep convection: UARS MLS observations and analyses. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	121
98	Observational evidence against mountain-wave generation of ice nuclei as a prerequisite for the formation of three solid nitric acid polar stratospheric clouds observed in the Arctic in early December 1999. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	27
99	A search for mountain waves in MLS stratospheric limb radiances from the winter Northern Hemisphere: Data analysis and global mountain wave modeling. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	66
100	NOGAPS-ALPHA model simulations of stratospheric ozone during the SOLVE2 campaign. Atmospheric Chemistry and Physics, 2004, 4, 2401-2423.	4.9	43
101	Internal Waves in a Lagrangian Reference Frame. Journals of the Atmospheric Sciences, 2004, 61, 1308-1313.	1.7	8
102	Mountain waves in the middle atmosphere: Microwave limb sounder observations and analyses. Advances in Space Research, 2003, 32, 801-806.	2.6	31
103	Hemispheric differences in the temperature of the summertime stratosphere and mesosphere. Journal of Geophysical Research, 2003, 108, .	3.3	68
104	An overview of the past, present and future of gravityâ€wave drag parametrization for numerical climate and weather prediction models. Atmosphere - Ocean, 2003, 41, 65-98.	1.6	316
105	A Simplified Fourier Method for Nonhydrostatic Mountain Waves. Journals of the Atmospheric Sciences, 2003, 60, 2686-2696.	1.7	32
106	Infrared limb sounding measurements of middle-atmosphere gravity waves by CRISTA. , 2003, 4882, 134.		5
107	Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study. Journal of Geophysical Research, 2002, 107, CRI 6-1-CRI 6-23.	3.3	227
108	In situ observations of gravity waves and comparisons with numerical simulations during the SOLVE/THESEO 2000 campaign. Journal of Geophysical Research, 2002, 107, SOL 35-1.	3.3	33

#	Article	IF	CITATIONS
109	Large-scale chemical evolution of the Arctic vortex during the 1999/2000 winter: HALOE/POAM III Lagrangian photochemical modeling for the SAGE III-Ozone Loss and Validation Experiment (SOLVE) campaign. Journal of Geophysical Research, 2002, 107, SOL 60-1-SOL 60-26.	3.3	19
110	Upper Atmosphere Research Satellite (UARS) MLS observation of mountain waves over the Andes. Journal of Geophysical Research, 2002, 107, SOL 15-1.	3.3	81
111	Maslov's method for stationary hydrostatic mountain waves. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 1159-1171.	2.7	29
112	Horizontal temperature variability in the stratosphere: global variations inferred from CRISTA data. Advances in Space Research, 2001, 27, 1641-1646.	2.6	2
113	Indications of convectively generated gravity waves in crista temperatures. Advances in Space Research, 2001, 27, 1653-1658.	2.6	37
114	Modulation of gravity waves by tides as seen in CRISTA temperatures. Advances in Space Research, 2001, 27, 1773-1778.	2.6	33
115	A hybrid method for wave propagation from a localized source, with application to mountain waves. Quarterly Journal of the Royal Meteorological Society, 2001, 127, 129-146.	2.7	24
116	The role of waves in the transport circulation of the middle atmosphere. Geophysical Monograph Series, 2000, , 21-35.	0.1	75
117	Numerical simulations of mountain waves in the middle atmosphere over the southern Andes. Geophysical Monograph Series, 2000, , 311-318.	0.1	5
118	On the coupling between middle and upper atmospheric odd nitrogen. Geophysical Monograph Series, 2000, , 101-116.	0.1	35
119	Interannual variability of the diurnal tide in the low-latitude mesosphere and lower thermosphere during equinoxes: Mechanistic model interpretation of the 1992–96 HRDI measurements. Geophysical Monograph Series, 2000, , 221-226.	0.1	0
120	Year-round temperature and wave measurements of the arctic middle atmosphere for 1995–1998. Geophysical Monograph Series, 2000, , 213-219.	0.1	7
121	Mid-latitude temperatures at 87 km: Results from multi-instrument Fourier analysis. Geophysical Research Letters, 2000, 27, 2109-2112.	4.0	11
122	Role of lee waves in the formation of solid polar stratospheric clouds: Case studies from February 1997. Journal of Geophysical Research, 2000, 105, 6845-6853.	3.3	26
123	Comparison of global distributions of zonal-mean gravity wave variance inferred from different satellite instruments. Geophysical Research Letters, 2000, 27, 3877-3880.	4.0	62
124	Global Measurements of Stratospheric Mountain Waves from Space. Science, 1999, 286, 1534-1537.	12.6	254
125	Isentropic advection by gravity waves: Quasi-universalMâ^'3vertical wavenumber spectra near the onset of instability. Geophysical Research Letters, 1999, 26, 201-204.	4.0	31
126	Widespread solid particle formation by mountain waves in the Arctic stratosphere. Journal of Geophysical Research, 1999, 104, 1827-1836.	3.3	73

#	Article	IF	CITATIONS
127	On the importance of weak steady shear in the refraction of short internal waves. Geophysical Research Letters, 1999, 26, 2877-2880.	4.0	4
128	Mesoscale Temperature Fluctuations Induced by a Spectrum of Gravity Waves: A Comparison of Parameterizations and Their Impact on Stratospheric Microphysics. Journals of the Atmospheric Sciences, 1999, 56, 1913-1924.	1.7	35
129	Age of air in a zonally averaged two-dimensional model. Journal of Geophysical Research, 1998, 103, 11263-11288.	3.3	21
130	Gravity Wave Perturbations of Minor Constituents: A Parcel Advection Methodology. Journals of the Atmospheric Sciences, 1998, 55, 3521-3539.	1.7	29
131	Influence of Wave Propagation on the Doppler Spreading of Atmospheric Gravity Waves. Journals of the Atmospheric Sciences, 1997, 54, 2554-2573.	1.7	48
132	Gravity wave characteristics in the middle atmosphere derived from the Empirical Mode Decomposition method. Journal of Geophysical Research, 1997, 102, 16545-16561.	3.3	28
133	Dual lidar observations of mesoscale fluctuations of ozone and horizontal winds. Geophysical Research Letters, 1997, 24, 1627-1630.	4.0	17
134	Intraseasonal wind variability in the equatorial mesosphere and lower thermosphere: long-term observations from the central Pacific. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59, 603-627.	1.6	77
135	GROGRAT: A new model of the global propagation and dissipation of atmospheric gravity waves. Advances in Space Research, 1997, 20, 1253-1256.	2.6	60
136	Gravity-Wave Parameters in the Lower Stratosphere. , 1997, , 7-25.		73
137	Analysis of Intermittency in Aircraft Measurements of Velocity, Temperature and Atmospheric Tracers using Wavelet Transforms. , 1997, , 85-102.		7
138	Simulation of lidar measurements of gravity waves in the mesosphere. Journal of Geophysical Research, 1996, 101, 9509-9522.	3.3	4
139	Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft. Journal of Geophysical Research, 1996, 101, 9441-9470.	3.3	142
140	Hodographic analysis of gravity waves: Relationships among Stokes parameters, rotary spectra and cross-spectral methods. Journal of Geophysical Research, 1996, 101, 19169-19174.	3.3	64
141	An idealized ray model of gravity wave-tidal interactions. Journal of Geophysical Research, 1996, 101, 21195-21212.	3.3	47
142	Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. Quarterly Journal of the Royal Meteorological Society, 1995, 121, 149-186.	2.7	121
143	On the observed morphology of gravity-wave and equatorial-wave variance in the stratosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1995, 57, 105-134.	0.9	46
144	A Three-Dimensional Nonhydrostatic Ray-Tracing Model for Gravity Waves: Formulation and Preliminary Results for the Middle Atmosphere. Journals of the Atmospheric Sciences, 1995, 52, 1959-1984.	1.7	198

#	Article	IF	CITATIONS
145	Effect of background winds on vertical wavenumber spectra of atmospheric gravity waves. Journal of Geophysical Research, 1995, 100, 14097.	3.3	45
146	First observations of intraseasonal oscillations in the equatorial mesosphere and lower thermosphere. Geophysical Research Letters, 1994, 21, 265-268.	4.0	50
147	VHF Radar Observations of Gravity-Wave Production by Cold Fronts over Southern Australia. Journals of the Atmospheric Sciences, 1993, 50, 785-806.	1.7	76
148	Rayâ€ŧracing simulation of the global propagation of inertia gravity waves through the zonally averaged middle atmosphere. Journal of Geophysical Research, 1992, 97, 15849-15866.	3.3	45
149	VHF radar observations of mesoscale motions in the troposphere: Evidence for gravity wave Doppler shifting. Radio Science, 1990, 25, 1019-1037.	1.6	37
150	Effects of nonstationarity on spectral analysis of mesoscale motions in the atmosphere. Journal of Geophysical Research, 1990, 95, 16685-16703.	3.3	15
151	Falling sphere observations of anisotropic gravity wave motions in the upper stratosphere over Australia. Pure and Applied Geophysics, 1989, 130, 509-532.	1.9	85
152	Effect of superposition on measurements of atmospheric gravity waves: A cautionary note and some reinterpretations. Journal of Geophysical Research, 1989, 94, 6333-6339.	3.3	48
153	Falling Sphere Observations of Anisotropic Gravity Wave Motions in the Upper Stratosphere over Australia. , 1989, , 509-532.		19