
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6479253/publications.pdf Version: 2024-02-01



IIIAN P HINESTROZA

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nanotechnology in Textiles. ACS Nano, 2016, 10, 3042-3068.                                                                                                                                                     | 7.3  | 530       |
| 2  | Metal Nanoparticles on Natural Cellulose Fibers: Electrostatic Assembly and In Situ Synthesis. ACS<br>Applied Materials & Interfaces, 2009, 1, 797-803.                                                        | 4.0  | 193       |
| 3  | Assembly of Metal Nanoparticles on Electrospun Nylon 6 Nanofibers by Control of Interfacial<br>Hydrogen-Bonding Interactions. Chemistry of Materials, 2008, 20, 6627-6632.                                     | 3.2  | 167       |
| 4  | Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate. Talanta, 2019, 192, 424-430.                                                                            | 2.9  | 155       |
| 5  | Antibacterial activity against <i>Escherichia coli</i> of Cuâ€BTC (MOFâ€199) metalâ€organic framework<br>immobilized onto cellulosic fibers. Journal of Applied Polymer Science, 2014, 131, .                  | 1.3  | 137       |
| 6  | In situ synthesis of a Cu-BTC metal–organic framework (MOF 199) onto cellulosic fibrous substrates:<br>cotton. Cellulose, 2012, 19, 1771-1779.                                                                 | 2.4  | 132       |
| 7  | Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups.<br>Cellulose, 2012, 19, 411-424.                                                                            | 2.4  | 132       |
| 8  | Cotton Fabric Functionalized with a β-Cyclodextrin Polymer Captures Organic Pollutants from<br>Contaminated Air and Water. Chemistry of Materials, 2016, 28, 8340-8346.                                        | 3.2  | 110       |
| 9  | Atomic Layer Deposition of Conformal Inorganic Nanoscale Coatings on Three-Dimensional Natural<br>Fiber Systems:  Effect of Surface Topology on Film Growth Characteristics. Langmuir, 2007, 23,<br>9844-9849. | 1.6  | 105       |
| 10 | Viscoelastic (Nonâ€Fickian) Diffusion. Canadian Journal of Chemical Engineering, 2005, 83, 913-929.                                                                                                            | 0.9  | 101       |
| 11 | Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix.<br>Polymer Engineering and Science, 2009, 49, 2054-2061.                                                         | 1.5  | 91        |
| 12 | Tough cotton. Nature Nanotechnology, 2008, 3, 458-459.                                                                                                                                                         | 15.6 | 90        |
| 13 | Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. Journal of Applied Polymer Science, 2013, 127, 79-86.                                              | 1.3  | 90        |
| 14 | Biocomposite of nanostructured MnO2 and fique fibers for efficient dye degradation. Green Chemistry, 2013, 15, 2920.                                                                                           | 4.6  | 87        |
| 15 | Layer-by-layer deposition of polyelectrolyte nanolayers on natural fibres: cotton. Nanotechnology,<br>2005, 16, S422-S428.                                                                                     | 1.3  | 86        |
| 16 | Organic electronics on natural cotton fibres. Organic Electronics, 2011, 12, 2033-2039.                                                                                                                        | 1.4  | 85        |
| 17 | Cotton thread-based wearable sensor for non-invasive simultaneous diagnosis of diabetes and kidney failure. Sensors and Actuators B: Chemical, 2020, 321, 128549.                                              | 4.0  | 74        |
| 18 | Development and characterization of thin polymer films relevant to fiber processing. Thin Solid Films, 2009, 517, 4348-4354.                                                                                   | 0.8  | 59        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Adsorption and Association of a Symmetric PEO-PPO-PEO Triblock Copolymer on Polypropylene,<br>Polyethylene, and Cellulose Surfaces. ACS Applied Materials & Interfaces, 2011, 3, 2349-2357.                                    | 4.0 | 58        |
| 20 | Acid–Base Polymeric Foams for the Adsorption of Micro-oil Droplets from Industrial Effluents.<br>Environmental Science & Technology, 2017, 51, 8552-8560.                                                                      | 4.6 | 57        |
| 21 | Decoration of Cotton Fibers with a Water-Stable Metal–Organic Framework (UiO-66) for the<br>Decomposition and Enhanced Adsorption of Micropollutants in Water. Bioengineering, 2018, 5, 14.                                    | 1.6 | 54        |
| 22 | Cellulose meets reticular chemistry: interactions between cellulosic substrates and metal–organic frameworks. Cellulose, 2019, 26, 123-137.                                                                                    | 2.4 | 54        |
| 23 | Electrospun Nanofibers with Associative Polymerâ^'Surfactant Systems. Macromolecules, 2010, 43,<br>7650-7656.                                                                                                                  | 2.2 | 51        |
| 24 | Manufacturing of twisted continuous PAN nanofiber yarn by electrospinning process. Fibers and Polymers, 2011, 12, 610-615.                                                                                                     | 1.1 | 51        |
| 25 | Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide<br>nanoparticles for biomedical applications. Journal of Colloid and Interface Science, 2012, 377, 40-50.               | 5.0 | 50        |
| 26 | One-step growth of isoreticular luminescent metal–organic frameworks on cotton fibers. RSC<br>Advances, 2015, 5, 15198-15204.                                                                                                  | 1.7 | 45        |
| 27 | A panchromatic modification of the light absorption spectra of metal–organic frameworks. Chemical<br>Communications, 2016, 52, 6665-6668.                                                                                      | 2.2 | 44        |
| 28 | CuBTC metal-organic frameworks enmeshed in polyacrylonitrile fibrous membrane remove methyl parathion from solutions. Fibers and Polymers, 2014, 15, 200-207.                                                                  | 1.1 | 42        |
| 29 | Oriented Growth of α-MnO2 Nanorods Using Natural Extracts from Grape Stems and Apple Peels.<br>Nanomaterials, 2017, 7, 117.                                                                                                    | 1.9 | 42        |
| 30 | Synthesis of silver nanoparticles using aqueous extracts of Heterotheca inuloides as reducing agent<br>and natural fibers as templates: Agave lechuguilla and silk. Materials Science and Engineering C, 2016,<br>69, 429-436. | 3.8 | 40        |
| 31 | Direct measurement of fluid velocity in an electrospinning jet using particle image velocimetry.<br>Journal of Applied Physics, 2007, 102, .                                                                                   | 1.1 | 39        |
| 32 | Associative Polymer Facilitated Electrospinning of Nanofibers. Macromolecules, 2008, 41, 4275-4283.                                                                                                                            | 2.2 | 39        |
| 33 | Transparent Ultraviolet (UV)-Shielding Films Made from Waste Hemp Hurd and Polyvinyl Alcohol<br>(PVA). Polymers, 2020, 12, 1190.                                                                                               | 2.0 | 39        |
| 34 | Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers.<br>Cellulose, 2007, 14, 615-623.                                                                                           | 2.4 | 38        |
| 35 | Controllable fabrication and properties of polypropylene nanofibers. Polymer Engineering and Science, 2007, 47, 1865-1872.                                                                                                     | 1.5 | 36        |
| 36 | Conformal coating of yarns and wires with electrospun nanofibers. Polymer Engineering and Science, 2012, 52, 1724-1732.                                                                                                        | 1.5 | 34        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Nanowire-Functionalized Cotton Textiles. ACS Applied Materials & amp; Interfaces, 2014, 6, 2262-2269.                                                                                                        | 4.0 | 32        |
| 38 | Versatile Molding Process for Tough Cellulose Hydrogel Materials. Scientific Reports, 2015, 5, 16266.                                                                                                        | 1.6 | 32        |
| 39 | Boundary Lubrication of PEO-PPO-PEO Triblock Copolymer Physisorbed on Polypropylene,<br>Polyethylene, and Cellulose Surfaces. Industrial & Engineering Chemistry Research, 2012, 51,<br>2931-2940.           | 1.8 | 31        |
| 40 | In situ synthesis of gold nanoparticles using fique natural fibers as template. Cellulose, 2012, 19,<br>1933-1943.                                                                                           | 2.4 | 31        |
| 41 | Direct probing of solvent-induced charge degradation in polypropylene electret fibres via electrostatic force microscopy. Journal of Microscopy, 2007, 225, 72-79.                                           | 0.8 | 30        |
| 42 | Soybean agglutinin-conjugated silver nanoparticles nanocarriers in the treatment of breast cancer cells. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 218-234.                                | 1.9 | 28        |
| 43 | Controlled synthesis of ZnO particles on the surface of natural cellulosic fibers: effect of concentration, heating and sonication. Cellulose, 2015, 22, 1841-1852.                                          | 2.4 | 26        |
| 44 | Building Circular Economy for Smart Textiles, Smart Clothing, and Future Wearables. Materials<br>Circular Economy, 2020, 2, 1.                                                                               | 1.6 | 26        |
| 45 | Synthesis of a zinc–imidazole metal–organic framework (ZIF-8) using ZnO rods grown on cotton<br>fabrics as precursors: arsenate absorption studies. Cellulose, 2020, 27, 6399-6410.                          | 2.4 | 25        |
| 46 | Multi-functional regenerated cellulose fibers decorated with plasmonic Au nanoparticles for colorimetry and SERS assays. Cellulose, 2018, 25, 6041-6053.                                                     | 2.4 | 24        |
| 47 | Effect of xylene exposure on the performance of electret filter media. Journal of Aerosol Science, 2006, 37, 903-911.                                                                                        | 1.8 | 22        |
| 48 | Apparatus for Studying the Effect of Mechanical Deformation on the Permeation of Organics through Polymeric Films. Industrial & Engineering Chemistry Research, 2001, 40, 2183-2187.                         | 1.8 | 21        |
| 49 | Electrostatic assembly of core-corona silica nanoparticles onto cotton fibers. Cellulose, 2013, 20, 1727-1736.                                                                                               | 2.4 | 21        |
| 50 | Grafting collagen on poly (lactic acid) by a simple route to produce electrospun scaffolds, and their cell adhesion evaluation. Tissue Engineering and Regenerative Medicine, 2016, 13, 375-387.             | 1.6 | 19        |
| 51 | In Situ and Real-Time Studies, via Synchrotron X-ray Scattering, of the Orientational Order of Cellulose Nanocrystals during Solution Shearing. Langmuir, 2018, 34, 5263-5272.                               | 1.6 | 19        |
| 52 | Synthesis, Characterization, and Catalytic Activity of Platinum Nanoparticles on Bovine-Bone Powder:<br>A Novel Support. Journal of Nanomaterials, 2018, 2018, 1-8.                                          | 1.5 | 19        |
| 53 | Assembly of metal nanoparticles on regenerated fibers from wood sawdust and de-inked pulp: flexible<br>substrates for surface enhanced Raman scattering (SERS) applications. Cellulose, 2015, 22, 3645-3655. | 2.4 | 18        |
| 54 | Can nanotechnology be fashionable? Materials Today, 2007, 10, 64                                                                                                                                             | 83  | 13        |

Can nanotechnology be fashionable?. Materials Today, 2007, 10, 64. 54

8.3 13

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Fabrication and characterization of a novel polypropylene/poly(vinyl alcohol)/aluminum hybrid<br>layered assembly for highâ€performance fibrous insulation. Journal of Applied Polymer Science, 2008,<br>110, 2525-2530.               | 1.3 | 13        |
| 56 | Carbon nanotube/poly(vinyl alcohol) fibers with a sheath-core structure prepared by wet spinning.<br>Fibers and Polymers, 2012, 13, 874-879.                                                                                           | 1.1 | 13        |
| 57 | Modification of Cotton Fibers with Magnetite and Magnetic Coreâ€6hell Mesoporous Silica<br>Nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800266.                                            | 0.8 | 13        |
| 58 | Cells on Pores: A Simulation-Driven Analysis of Transcellular Small Molecule Transport. Molecular<br>Pharmaceutics, 2010, 7, 456-467.                                                                                                  | 2.3 | 12        |
| 59 | Determination of the porosity in a bifacial fabric using micro-computed tomography and three-dimensional reconstruction. Textile Reseach Journal, 2018, 88, 1263-1277.                                                                 | 1.1 | 12        |
| 60 | Surface Modification of Polyester Fabrics by Ozone and Its Effect on Coloration Using Disperse Dyes.<br>Materials, 2021, 14, 3492.                                                                                                     | 1.3 | 12        |
| 61 | Charge Characterization of an Electrically Charged Fiber via Electrostatic Force Microscopy. Journal of Engineered Fibers and Fabrics, 2006, 1, 155892500600100.                                                                       | 0.5 | 11        |
| 62 | Size-controlled synthesis of Fe2O3 and Fe3O4 nanoparticles onto zeolite by means of a modified activated-coprecipitation method: effect of the HCl concentration during the activation. Journal of Nanoparticle Research, 2012, 14, 1. | 0.8 | 11        |
| 63 | Threadâ€Based Wristwatch Sensing Device for Noninvasive and Simultaneous Detection of Clucose and Lactate. Advanced Materials Technologies, 2022, 7, .                                                                                 | 3.0 | 11        |
| 64 | Formation of silk–gold nanocomposite fabric using grapefruit aqueous extract. Textile Reseach<br>Journal, 2013, 83, 1229-1235.                                                                                                         | 1.1 | 10        |
| 65 | The Long and Bright Path of a Lanthanide MOF: From Basics towards the Application. Chemistry - A<br>European Journal, 2021, 27, 7376-7382.                                                                                             | 1.7 | 10        |
| 66 | Effect of temperature and elongation on the liquid diffusion and permeation characteristics of<br>natural rubber, nitrile rubber, and bromobutyl rubber. Journal of Applied Polymer Science, 2000, 78,<br>1250-1255.                   | 1.3 | 9         |
| 67 | Piezoelectric Poly(3-hydroxybutyrate)-Poly(lactic acid) Three Dimensional Scaffolds for Bone Tissue<br>Engineering. Materials Research Society Symposia Proceedings, 2007, 1025, 1.                                                    | 0.1 | 9         |
| 68 | Application of electrostatic force microscopy on characterizing an electrically charged fiber. Fibers and Polymers, 2010, 11, 775-781.                                                                                                 | 1.1 | 9         |
| 69 | Surface modification of polyester fabrics using low pressure air radio frequency plasma.<br>International Journal of Fashion Design, Technology and Education, 2010, 3, 119-127.                                                       | 0.9 | 9         |
| 70 | Synthesis of cellulose nanofiber hydrogels from fique tow and Ag nanoparticles. Cellulose, 2020, 27,<br>9947-9961.                                                                                                                     | 2.4 | 9         |
| 71 | Surface charge estimation on hemispherical dielectric samples from EFM force gradient measurements. Journal of Electrostatics, 2010, 68, 79-84.                                                                                        | 1.0 | 7         |
| 72 | Application of electrostatic force microscopy on characterizing an electret fiber: Effect of tip to specimen distance on phase shift. Fibers and Polymers, 2011, 12, 89-94.                                                            | 1.1 | 7         |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Cell-based Computational Modeling Approach for Developing Site-Directed Molecular Probes. PLoS<br>Computational Biology, 2012, 8, e1002378.                                                               | 1.5 | 7         |
| 74 | Silver micro-, submicro- and nano-crystals using bovine bone as template. Formation of a silver/bovine bone composite. Materials Letters, 2012, 85, 157-160.                                                | 1.3 | 7         |
| 75 | Direct observation of the spatial distribution of charges on a polypropylene fiber via Electrostatic<br>Force Microscopy. Journal of Microscopy, 2012, 248, 266-270.                                        | 0.8 | 7         |
| 76 | Curcumin-Loaded Biodegradable Electrospun Fibers: Preparation, Characterization, and Differences in<br>Fiber Morphology. International Journal of Polymer Analysis and Characterization, 2013, 18, 534-544. | 0.9 | 7         |
| 77 | Removal of sodium and chloride ions from aqueous solutions using fique fibers (Furcraea spp.).<br>Water Science and Technology, 2016, 73, 1197-1201.                                                        | 1.2 | 7         |
| 78 | DFT studies on coordination models for adsorption essays of Cu(II) and Ni(II) solutions in modified silica gel with iminodiacetic groups. Chemical Papers, 2017, 71, 1019-1030.                             | 1.0 | 7         |
| 79 | Revolutionary Textiles: A Philosophical Inquiry on Electronic and Reactive Textiles. Design Issues, 2020, 36, 45-58.                                                                                        | 0.2 | 7         |
| 80 | High-Yield Synthesis of the Novel E,E-2,5-Dimethoxy-1,4-bis[2-(4-ethylcarboxylatestyril)]benzene by the<br>Heck Reaction. Synthetic Communications, 2013, 43, 2280-2285.                                    | 1.1 | 6         |
| 81 | Enhanced biosorption of Cr(VI) using cotton fibers coated with chitosan – role of ester bonds.<br>Water Science and Technology, 2018, 78, 476-486.                                                          | 1.2 | 6         |
| 82 | Conformal Functionalization of Cotton Fibers via Isoreticular Expansion of UiO-66 Metal-Organic<br>Frameworks. Coatings, 2020, 10, 1172.                                                                    | 1.2 | 6         |
| 83 | Degradation Processes in Corona-Charged Electret Filter-Media with Exposure to Ethyl Benzene.<br>Journal of Engineered Fibers and Fabrics, 2007, 2, 155892500700200.                                        | 0.5 | 5         |
| 84 | Adsorption mechanisms of emulsified crude oil droplets onto hydrophilic open-cell polymer foams.<br>AIP Conference Proceedings, 2017, , .                                                                   | 0.3 | 5         |
| 85 | Permeation of Organics through Linear Low Density Polyethylene Geomembranes under Mechanical<br>Deformation. Journal of Environmental Engineering, ASCE, 2004, 130, 1468-1474.                              | 0.7 | 4         |
| 86 | Structure and Properties of Poly(ethylene terephthalate) Fiber Webs Prepared via<br>Laser-Electrospinning and Subsequent Annealing Processes. Materials, 2020, 13, 5783.                                    | 1.3 | 4         |
| 87 | Versatile Covalent Postsynthetic Modification of Metal Organic Frameworks via Thermal<br>Condensation for Fluoride Sensing in Waters. Bioengineering, 2021, 8, 196.                                         | 1.6 | 4         |
| 88 | Planar or Biaxial Stretching of Poly(ethylene terephthalate) Fiber Webs Prepared by<br>Laser-Electrospinning. Materials, 2022, 15, 2209.                                                                    | 1.3 | 4         |
| 89 | Transport of small molecules through mechanically elongated polymeric membranes. Journal of<br>Applied Polymer Science, 2005, 96, 1200-1203.                                                                | 1.3 | 3         |
| 90 | Modeling of Cross-Flow Across an Electrostatically Charged Monolith Filter. Particulate Science and Technology, 2012, 30, 461-473.                                                                          | 1.1 | 3         |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Undisciplining the university through shared purpose, practice, and place. Humanities and Social Sciences Communications, 2022, 9, .                                       | 1.3 | 3         |
| 92 | Functionalization of poly(lacticâ€coâ€glycolic acid) nanofibrous membranes with antibiofilm<br>compounds. Canadian Journal of Chemical Engineering, 2022, 100, .           | 0.9 | 2         |
| 93 | Electrospun Magnetic Nanofibers With Anti-Counterfeiting Applications. , 2005, , 467.                                                                                      |     | 1         |
| 94 | Collection Efficiency for Filters with Staggered Parallel Y and Triple Y Fibers: A Numerical Study.<br>Journal of Engineered Fibers and Fabrics, 2009, 4, 155892500900400. | 0.5 | 1         |
| 95 | Boundary lubrication phenomena in coated textile surfaces. , 2008, , 419-447.                                                                                              |     | Ο         |
| 96 | A Solid-State Pathway towards the Tunable Carboxylation of Cellulosic Fabrics: Controlling the<br>Surface's Acidity. Membranes, 2021, 11, 514.                             | 1.4 | 0         |