Dake Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6479063/publications.pdf

Version: 2024-02-01

623734 713466 23 762 14 21 citations h-index g-index papers 24 24 24 1143 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	A bioactive compliant vascular graft modulates macrophage polarization and maintains patency with robust vascular remodeling. Bioactive Materials, 2023, 19, 167-178.	15.6	15
2	Bioactive extracellular matrix scaffolds engineered with proangiogenic proteoglycan mimetics and loaded with endothelial progenitor cells promote neovascularization and diabetic wound healing. Bioactive Materials, 2022, 10, 460-473.	15.6	25
3	Engineering extracellular vesicles for Alzheimer's disease: An emerging cellâ€free approach for earlier diagnosis and treatment. WIREs Mechanisms of Disease, 2022, 14, e1541.	3.3	3
4	Engineering Extracellular Microenvironment for Tissue Regeneration. Bioengineering, 2022, 9, 202.	3.5	10
5	Bioengineered extracellular vesicle-loaded bioscaffolds for therapeutic applications in regenerative medicine. , 2021, 2, 175-178.		8
6	Long non-coding RNA signatures as predictors of prognosis in thyroid cancer: a narrative review. Annals of Translational Medicine, 2021, 9, 359-359.	1.7	5
7	Exosomal microRNAs from mesenchymal stem/stromal cells: Biology and applications in neuroprotection. World Journal of Stem Cells, 2021, 13, 776-794.	2.8	22
8	Nrf2 Regulates CHI3L1 to Suppress Inflammation and Improve Post-Traumatic Osteoarthritis. Journal of Inflammation Research, 2021, Volume 14, 4079-4088.	3.5	16
9	The Unique Properties of Placental Mesenchymal Stromal Cells: A Novel Source of Therapy for Congenital and Acquired Spinal Cord Injury. Cells, 2021, 10, 2837.	4.1	8
10	Developing an Injectable Nanofibrous Extracellular Matrix Hydrogel With an Integrin $\hat{l}\pm v\hat{l}^2$ 3 Ligand to Improve Endothelial Cell Survival, Engraftment and Vascularization. Frontiers in Bioengineering and Biotechnology, 2020, 8, 890.	4.1	10
11	Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomaterialia, 2020, 108, 178-193.	8.3	51
12	Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization. Frontiers in Bioengineering and Biotechnology, 2020, 8, 633.	4.1	37
13	Surface modification of polymeric electrospun scaffolds (i>via (i) a potent and high-affinity integrin $\hat{1}\pm4\hat{1}^21$ ligand improved the adhesion, spreading and survival of human chorionic villus-derived mesenchymal stem cells: a new insight for fetal tissue engineering. Journal of Materials Chemistry B, 2020. 8. 1649-1659.	5.8	20
14	Developing Regenerative Treatments for Developmental Defects, Injuries, and Diseases Using Extracellular Matrix Collagen-Targeting Peptides. International Journal of Molecular Sciences, 2019, 20, 4072.	4.1	15
15	Potential long-term treatment of hemophilia A by neonatal co-transplantation of cord blood-derived endothelial colony-forming cells and placental mesenchymal stromal cells. Stem Cell Research and Therapy, 2019, 10, 34.	5.5	27
16	The functions and applications of A7R in anti-angiogenic therapy, imaging and drug delivery systems. Asian Journal of Pharmaceutical Sciences, 2019, 14, 595-608.	9.1	19
17	A Novel lncRNA IHS Promotes Tumor Proliferation and Metastasis in HCC by Regulating the ERK- and AKT/GSK- $3\hat{1}^2$ -Signaling Pathways. Molecular Therapy - Nucleic Acids, 2019, 16, 707-720.	5.1	42
18	Hypoxic Preconditioning Enhances Survival and Proangiogenic Capacity of Human First Trimester Chorionic Villus-Derived Mesenchymal Stem Cells for Fetal Tissue Engineering. Stem Cells International, 2019, 2019, 1-12.	2.5	28

Dake Hao

#	Article	IF	CITATION
19	ANKHD1 is required for SMYD3 to promote tumor metastasis in hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 18.	8.6	34
20	Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cellâ€free therapy. Journal of Extracellular Vesicles, 2018, 7, 1522236.	12.2	210
21	Potential Long-Term Treatment of Hemophilia a By Early Postnatal Co-Transplantation of Cord Blood Derived Endothelial Colony-Forming Cells and Placental Mesenchymal Stem Cells. Blood, 2018, 132, 3318-3318.	1.4	0
22	Highly Efficient Differentiation of Endothelial Cells from Pluripotent Stem Cells Requires the MAPK and the PI3K Pathways. Stem Cells, 2017, 35, 909-919.	3.2	113
23	Discovery and Characterization of a Potent and Specific Peptide Ligand Targeting Endothelial Progenitor Cells and Endothelial Cells for Tissue Regeneration. ACS Chemical Biology, 2017, 12, 1075-1086.	3.4	44