
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6478792/publications.pdf Version: 2024-02-01

LOSÃO P FERNÃ:NDEZ

#	Article	IF	CITATIONS
1	Numerical analysis and simulations of a dynamic frictionless contact problem with damage. Computer Methods in Applied Mechanics and Engineering, 2006, 196, 476-488.	3.4	92
2	A three-dimensional numerical simulation of mandible fracture reduction with screwed miniplates. Journal of Biomechanics, 2003, 36, 329-337.	0.9	70
3	Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion. Journal of Computational and Applied Mathematics, 2003, 159, 431-465.	1.1	57
4	A three-dimensional computer model of the human mandible in two simulated standard trauma situations. Journal of Cranio-Maxillo-Facial Surgery, 2004, 32, 303-307.	0.7	52
5	Analysis of a Moore–Gibson–Thompson thermoelastic problem. Journal of Computational and Applied Mathematics, 2021, 382, 113058.	1.1	52
6	A frictionless contact problem for elastic–viscoplastic materials with normal compliance and damage. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 5007-5026.	3.4	42
7	Moore-Gibson-Thompson theory for thermoelastic dielectrics. Applied Mathematics and Mechanics (English Edition), 2021, 42, 309-316.	1.9	34
8	Numerical analysis of dynamic thermoviscoelastic contact with damage of a rod. IMA Journal of Applied Mathematics, 2005, 70, 768-795.	0.8	33
9	Piezoelectricity could predict sites of formation/resorption in bone remodelling and modelling. Journal of Theoretical Biology, 2012, 292, 86-92.	0.8	33
10	A genetic algorithm for the characterization of hyperelastic materials. Applied Mathematics and Computation, 2018, 329, 239-250.	1.4	32
11	A dynamic viscoelastic contact problem with normal compliance and damage. Finite Elements in Analysis and Design, 2005, 42, 1-24.	1.7	30
12	Three-dimensional numerical simulation of dental implants as orthodontic anchorage. European Journal of Orthodontics, 2005, 27, 12-16.	1.1	30
13	Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 3724-3732.	3.4	29
14	A CLASS OF EVOLUTIONARY VARIATIONAL INEQUALITIES WITH APPLICATIONS IN VISCOELASTICITY. Mathematical Models and Methods in Applied Sciences, 2005, 15, 1595-1617.	1.7	27
15	Numerical analysis of two frictionless elastic-piezoelectric contact problems. Journal of Mathematical Analysis and Applications, 2008, 339, 905-917.	0.5	27
16	Existence and Regularity for Dynamic Viscoelastic Adhesive Contact with Damage. Applied Mathematics and Optimization, 2006, 53, 31-66.	0.8	25
17	Numerical analysis of a strain-adaptive bone remodelling problem. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 1549-1557.	3.4	25
18	Quasistatic evolution of damage in an elastic body: numerical analysis and computational experiments. Applied Numerical Mathematics, 2007, 57, 975-988.	1.2	22

#	Article	IF	CITATIONS
19	A frictionless contact problem for elastic-viscoplastic materials with normal compliance: Numerical analysis and computational experiments. Numerische Mathematik, 2002, 90, 689-719.	0.9	21
20	Analysis and numerical simulations of a dynamic contact problem with adhesion. Mathematical and Computer Modelling, 2003, 37, 1317-1333.	2.0	21
21	Numerical stability and convergence analysis of bone remodeling model. Computer Methods in Applied Mechanics and Engineering, 2014, 271, 253-268.	3.4	21
22	Lord–Shulman Thermoelasticity with Microtemperatures. Applied Mathematics and Optimization, 2021, 84, 1667-1685.	0.8	20
23	A Membrane in Adhesive Contact. SIAM Journal on Applied Mathematics, 2003, 64, 152-169.	0.8	17
24	Existence, stability and numerical results for a Timoshenko beam with thermodiffusion effects. Zeitschrift Fur Angewandte Mathematik Und Physik, 2019, 70, 1.	0.7	17
25	Variational and numerical analysis of a dynamic frictionless contact problem with adhesion. Journal of Computational and Applied Mathematics, 2003, 156, 127-157.	1.1	16
26	A thermoviscoelastic beam with a tip body. Computational Mechanics, 2004, 33, 225-234.	2.2	16
27	Numerical analysis of a frictionless viscoelastic contact problem with normal damped response. Computers and Mathematics With Applications, 2004, 47, 549-568.	1.4	16
28	Analysis of dynamic nonlinear thermoviscoelastic beam problems. Nonlinear Analysis: Theory, Methods & Applications, 2014, 95, 774-795.	0.6	16
29	A dynamic thermoviscoelastic contact problem with the second sound effect. Journal of Mathematical Analysis and Applications, 2015, 421, 1163-1195.	0.5	16
30	A thermoelastic problem with diffusion, microtemperatures, and microconcentrations. Acta Mechanica, 2019, 230, 31-48.	1.1	16
31	A frictionless viscoelastodynamic contact problem with energy consistent properties: Numerical analysis and computational aspects. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 669-679.	3.4	15
32	A convergence result in elastic-viscoplastic contact problems with damage. Mathematical and Computer Modelling, 2003, 37, 301-321.	2.0	14
33	A thermoviscoelastic beam model for brakes. European Journal of Applied Mathematics, 2004, 15, 181-202.	1.4	14
34	Numerical analysis and simulations of a quasistatic frictional contact problem with damage in viscoelasticity. Journal of Computational and Applied Mathematics, 2006, 192, 30-39.	1.1	14
35	Numerical analysis of a frictionless viscoelastic piezoelectric contact problem. ESAIM: Mathematical Modelling and Numerical Analysis, 2008, 42, 667-682.	0.8	14
36	Numerical analysis of surfactant dynamics at air-water interface using the Henry isotherm. Journal of Mathematical Chemistry, 2011, 49, 1624-1645.	0.7	14

#	Article	IF	CITATIONS
37	On the decay of the energy for radial solutions in Moore–Gibson–Thompson thermoelasticity. Mathematics and Mechanics of Solids, 2021, 26, 1507-1514.	1.5	14
38	Analysis for the strain gradient theory of porous thermoelasticity. Journal of Computational and Applied Mathematics, 2019, 345, 247-268.	1.1	13
39	Variational and Numerical Analysis of a Frictionless Contact Problem for Elastic-Viscoplastic Materials with Internal State Variables. Quarterly Journal of Mechanics and Applied Mathematics, 2001, 54, 501-522.	0.5	12
40	Hyperelastic characterization oriented to finite element applications using genetic algorithms. Advances in Engineering Software, 2019, 133, 52-59.	1.8	12
41	Variational and numerical analysis of the Signorini′s contact problem in viscoplasticity with damage. Journal of Applied Mathematics, 2003, 2003, 87-114.	0.4	11
42	A quasistatic contact problem with normal compliance and damage involving viscoelastic materials with long memory. Applied Numerical Mathematics, 2008, 58, 1274-1290.	1.2	11
43	Numerical analysis of a diffusive strain-adaptive bone remodelling theory. International Journal of Solids and Structures, 2012, 49, 2085-2093.	1.3	11
44	Numerical analysis of a contact problem in poroâ€thermoelasticity with microtemperatures. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 1190-1209.	0.9	11
45	Numerical analysis of some dual-phase-lag models. Computers and Mathematics With Applications, 2019, 77, 407-426.	1.4	11
46	Analysis of two frictional viscoplastic contact problems with damage. Journal of Computational and Applied Mathematics, 2006, 196, 180-197.	1.1	10
47	An elastic–viscoplastic quasistatic contact problem with damage. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 3219-3229.	3.4	10
48	A dynamic contact problem involving a Timoshenko beam model. Applied Numerical Mathematics, 2013, 63, 117-128.	1.2	10
49	A poro-thermoelastic problem with dissipative heat conduction. Journal of Thermal Stresses, 2020, 43, 1415-1436.	1.1	10
50	On a mixture of an MGT viscous material and an elastic solid. Acta Mechanica, 2022, 233, 291-297.	1.1	10
51	An Elastic-viscoplastic Quasistatic Contact Problem: Existence and Uniqueness of a Weak Solution. Archive for Rational Mechanics and Analysis, 2009, 191, 423-445.	1.1	9
52	Finite element approximation to a contact problem for a nonlinear thermoviscoelastic beam. Journal of Mathematical Analysis and Applications, 2011, 383, 506-521.	0.5	9
53	A porous thermoelastic problem: An a priori error analysis and computational experiments. Applied Mathematics and Computation, 2017, 305, 117-135.	1.4	9
54	On the thermoelasticity with two porosities: asymptotic behaviour. Mathematics and Mechanics of Solids, 2019, 24, 2713-2725.	1.5	9

#	Article	IF	CITATIONS
55	Behavior characterization of visco-hyperelastic models for rubber-like materials using genetic algorithms. Applied Mathematical Modelling, 2019, 66, 241-255.	2.2	9
56	Analysis of a contact problem for a viscoelastic Bresse system. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, 887-911.	0.8	9
57	A normal compliance contact problem in viscoelasticity: An a posteriori error analysis and computational experiments. Journal of Computational and Applied Mathematics, 2011, 235, 3599-3614.	1.1	8
58	Numerical analysis of a piezoelectric bone remodelling problem. European Journal of Applied Mathematics, 2012, 23, 635-657.	1.4	8
59	A mixed kinetic-diffusion surfactant model for the Henry isotherm. Journal of Mathematical Analysis and Applications, 2012, 389, 670-684.	0.5	8
60	Analysis of a problem arising in porous thermoelasticity of type II. Journal of Thermal Stresses, 2016, 39, 513-531.	1.1	8
61	A contact problem in thermoviscoelastic diffusion theory with second sound. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51, 759-796.	0.8	8
62	Finite Element Study of a Threaded Fastening: The Case of Surgical Screws in Bone. Symmetry, 2018, 10, 335.	1.1	8
63	On the Viscoelastic Mixtures of Solids. Applied Mathematics and Optimization, 2019, 79, 309-326.	0.8	8
64	Existence for a thermoviscoelastic beam model of brakes. Nonlinear Analysis: Real World Applications, 2004, 5, 857-880.	0.9	7
65	Numerical analysis of a contact problem between two elastic–viscoplastic bodies with hardening and nonmatching meshes. Finite Elements in Analysis and Design, 2004, 40, 771-791.	1.7	7
66	Numerical analysis of a quasistatic thermoviscoelastic frictional contact problem. Computational Mechanics, 2005, 35, 459-469.	2.2	7
67	A dynamic contact problem in thermoviscoelasticity with two temperatures. Applied Numerical Mathematics, 2014, 77, 55-71.	1.2	7
68	Analysis of a multidimensional thermoviscoelastic contact problem under the Green–Lindsay theory. Journal of Computational and Applied Mathematics, 2019, 345, 224-246.	1.1	7
69	Analysis of a thermoelastic Timoshenko beam model. Acta Mechanica, 2020, 231, 4111-4127.	1.1	7
70	Characterization of hyperelastic and damage behavior of tendons. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 213-223.	0.9	7
71	AN EXISTENCE AND UNIQUENESS RESULT FOR AN ELASTO-PIEZOELECTRIC PROBLEM WITH DAMAGE. Mathematical Models and Methods in Applied Sciences, 2009, 19, 31-50.	1.7	6
72	A priori and a posteriori error analyses in the study of viscoelastic problems. Journal of Computational and Applied Mathematics, 2009, 225, 569-580.	1.1	6

#	Article	IF	CITATIONS
73	A posteriori error analysis for the normal compliance problem. Applied Numerical Mathematics, 2010, 60, 64-73.	1.2	6
74	Numerical analysis and simulation of a bio-thermal model for the human foot. Applied Mathematics and Computation, 2017, 305, 103-116.	1.4	6
75	A porous thermoelastic problem with microtemperatures. Journal of Thermal Stresses, 2017, 40, 145-166.	1.1	6
76	Numerical analysis of a thermoelastic problem with dual-phase-lag heat conduction. Applied Numerical Mathematics, 2019, 140, 76-90.	1.2	6
77	On the uniqueness and analyticity in viscoelasticity with double porosity. Asymptotic Analysis, 2019, 112, 151-164.	0.2	6
78	Numerical analysis of a dual-phase-lag model with microtemperatures. Applied Numerical Mathematics, 2021, 166, 1-25.	1.2	6
79	Dynamic frictional contact of a viscoelastic beam. ESAIM: Mathematical Modelling and Numerical Analysis, 2006, 40, 295-310.	0.8	5
80	Dynamic vibrations of a damageable viscoelastic beam in contact with two stops. Numerical Methods for Partial Differential Equations, 2013, 29, 647-666.	2.0	5
81	A dynamic viscoelastic contact problem with normal compliance. Journal of Computational and Applied Mathematics, 2015, 276, 30-46.	1.1	5
82	Numerical analysis of a viscoelastic mixture problem. International Journal of Solids and Structures, 2016, 80, 393-404.	1.3	5
83	Behavior characterization of viscoelastic materials for the finite element method calculation applying Prony series. Computational and Mathematical Methods, 2019, 1, e1014.	0.3	5
84	Time decay for several porous thermoviscoelastic systems of Moore–Gibson–Thompson type. Asymptotic Analysis, 2022, 129, 339-359.	0.2	5
85	Analyse numérique d'un problème élasto-viscoplastique de contact sans frottement avec compliance normale. Comptes Rendus Mathematique, 2000, 331, 323-328.	0.5	4
86	Numerical Approximation of the Elastic-Viscoplastic Contact Problem with Non-matching Meshes. Numerische Mathematik, 2003, 94, 501-522.	0.9	4
87	Numerical analysis of an elastoâ€piezoelectric problem with damage. International Journal for Numerical Methods in Engineering, 2009, 77, 261-284.	1.5	4
88	Analysis of a dynamic frictional contact problem with damage. Finite Elements in Analysis and Design, 2009, 45, 659-674.	1.7	4
89	Ana posteriorierror analysis for dynamic viscoelastic problems. ESAIM: Mathematical Modelling and Numerical Analysis, 2011, 45, 925-945.	0.8	4
90	Variational analysis of the Langmuir–Hinshelwood dynamic mixed-kinetic adsorption model. Nonlinear Analysis: Real World Applications, 2014, 15, 205-220.	0.9	4

#	Article	IF	CITATIONS
91	An axisymmetric model for the analysis of dynamic surface tension. RSC Advances, 2015, 5, 7921-7931.	1.7	4
92	Finite Element Simulation for Analysing the Design and Testing of an Energy Absorption System. Materials, 2016, 9, 660.	1.3	4
93	Existence and Uniqueness Results for a Kinetic Model in Bulk-Surface Surfactant Dynamics. SIAM Journal on Mathematical Analysis, 2016, 48, 3065-3089.	0.9	4
94	Numerical Analysis of an Osseointegration Model. Mathematics, 2020, 8, 87.	1.1	4
95	An a priori error analysis of a Lord–Shulman poro-thermoelastic problem with microtemperatures. Acta Mechanica, 2020, 231, 4055-4076.	1.1	4
96	Analysis of a bone remodeling model. Communications on Pure and Applied Analysis, 2009, 8, 255-274.	0.4	4
97	Analysis of a one-dimensional damage model. Numerical Methods for Partial Differential Equations, 2005, 21, 1122-1139.	2.0	3
98	Numerical analysis of the quasistatic thermoviscoelastic thermistor problem. ESAIM: Mathematical Modelling and Numerical Analysis, 2006, 40, 353-366.	0.8	3
99	A convergence result in the study of bone remodeling contact problems. Journal of Mathematical Analysis and Applications, 2008, 343, 951-964.	0.5	3
100	A dynamic thermoviscoelastic problem: An existence and uniqueness result. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72, 4124-4135.	0.6	3
101	Numerical analysis of a quasi-static contact problem for a thermoviscoelastic beam. Journal of Computational and Applied Mathematics, 2011, 235, 4165-4173.	1.1	3
102	An existence and uniqueness result for a strain-adaptive bone remodeling problem. Nonlinear Analysis: Real World Applications, 2011, 12, 288-294.	0.9	3
103	Numerical analysis of an adsorption dynamic model at the air–water interface. Journal of Computational and Applied Mathematics, 2015, 281, 82-93.	1.1	3
104	A mixture of thermoelastic solids with two temperatures. Computers and Mathematics With Applications, 2017, 73, 1886-1899.	1.4	3
105	Numerical analysis of an osteoconduction model arising in bone-implant integration. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2017, 97, 1050-1063.	0.9	3
106	Analysis of Damage Models for Cortical Bone. Applied Sciences (Switzerland), 2019, 9, 2710.	1.3	3
107	Optimization of the Auxiliary-Beam System in Railway Bridge Vibration Mitigation Using FEM Simulation and Genetic Algorithms. Symmetry, 2019, 11, 1089.	1.1	3
108	Finite Element Validation of an Energy Attenuator for the Design of a Formula Student Car. Mathematics, 2020, 8, 416.	1.1	3

#	Article	IF	CITATIONS
109	Analysis of a Contact Problem Problem Involving an Elastic Body with Dual-Phase-Lag. Applied Mathematics and Optimization, 2021, 83, 939-977.	0.8	3
110	Time decay for porosity problems. Mathematical Methods in the Applied Sciences, 2022, 45, 4567-4577.	1.2	3
111	Analysis of a Mathematical Model Arising in Plant Disease Epidemiology. Applied Mathematics and Optimization, 2022, 85, .	0.8	3
112	Uniqueness for a high order ill posed problem. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2023, 153, 1425-1438.	0.8	3
113	Damageable contact between an elastic body and a rigid foundation. Journal of Computational and Applied Mathematics, 2009, 224, 646-657.	1.1	2
114	A Dynamic Thermoviscoelastic Problem: Numerical Analysis and Computational Experiments. Quarterly Journal of Mechanics and Applied Mathematics, 2010, 63, 295-314.	0.5	2
115	A thermoviscoelastic problem with damage. Finite Elements in Analysis and Design, 2012, 50, 255-265.	1.7	2
116	Numerical behavior of a linear mixed kinetic-diffusion model for surfactant adsorption at the air-water interface. Journal of Mathematical Chemistry, 2012, 50, 429-438.	0.7	2
117	On the existence of a solution for an adsorption dynamic model with the Langmuir isotherm. European Journal of Applied Mathematics, 2014, 25, 629-653.	1.4	2
118	A porous thermoviscoelastic mixture problem: numerical analysis and computational experiments. Applicable Analysis, 2018, 97, 1074-1093.	0.6	2
119	Analysis of a Poro-Thermo-Viscoelastic Model of Type III. Symmetry, 2019, 11, 1214.	1.1	2
120	Analysis of a thermoelastic problem of type III. European Physical Journal Plus, 2020, 135, 1.	1.2	2
121	Analysis of a bone remodeling model with myeloma disease arising in cellular dynamics. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3333.	1.0	2
122	An a priori error analysis of poro-thermoviscoelastic problems. Applied Mathematics and Computation, 2020, 379, 125268.	1.4	2
123	Thermoelastic Bresse system with dual-phase-lag model. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	0.7	2
124	A type III thermoelastic problem with mixtures. Journal of Computational and Applied Mathematics, 2021, 389, 113357.	1.1	2
125	A dynamic problem involving a coupled suspension bridge system: Numerical analysis and computational experiments. Evolution Equations and Control Theory, 2019, 8, 489-502.	0.7	2
126	Numerical approximation of some poro-elastic problems with MGT-type dissipation mechanisms. Applied Numerical Mathematics, 2022, 177, 123-136.	1.2	2

#	Article	IF	CITATIONS
127	Fast spatial behavior in higher order in time equations and systems. Zeitschrift Fur Angewandte Mathematik Und Physik, 2022, 73, 1.	0.7	2
128	Numerical analysis of a contact problem including bone remodeling. Journal of Computational and Applied Mathematics, 2011, 235, 1805-1811.	1.1	1
129	Analysis of a model for the propagation of the ossification front. Journal of Computational and Applied Mathematics, 2017, 318, 624-633.	1.1	1
130	A dynamic viscoelastic problem: Experimental and numerical results of a finite vibrating plate. Cogent Mathematics, 2017, 4, 1282691.	0.4	1
131	Analysis of contact problems of porous thermoelastic solids. Journal of Thermal Stresses, 2018, 41, 439-468.	1.1	1
132	Analysis of a contact problem involving thermoelastic mixtures. Journal of Mathematical Analysis and Applications, 2019, 479, 2032-2055.	0.5	1
133	Dynamics of Nonlinear Thermoelastic Double-Beam Systems. Quarterly Journal of Mechanics and Applied Mathematics, 2019, 72, 235-259.	0.5	1
134	A problem with viscoelastic mixtures: numerical analysis and computational experiments. Applicable Analysis, 2021, 100, 2684-2705.	0.6	1
135	Numerical analysis of a bone remodeling model with damage. Computer Methods in Applied Mechanics and Engineering, 2020, 367, 113113.	3.4	1
136	Spatial extension of a bone remodeling dynamics model and its finite element analysis. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3429.	1.0	1
137	On existence and numerical approximation in phase-lag thermoelasticity with two temperatures. Discrete and Continuous Dynamical Systems - Series B, 2021, .	0.5	1
138	On the approximate problem for the incremental thermoelasticity. Journal of Thermal Stresses, 2021, 44, 619-633.	1.1	1
139	On the time decay for the MGT-type porosity problems. Discrete and Continuous Dynamical Systems - Series S, 2022, 15, 1941.	0.6	1
140	Energy Decay in Thermoelastic Bodies with Radial Symmetry. Acta Applicandae Mathematicae, 2022, 179, .	0.5	1
141	EVALUATION OF A SHAPE IDENTIFICATION SYSTEM BASED ON A SIGNATURE FUNCTION. Cybernetics and Systems, 1994, 25, 177-185.	1.6	0
142	Numerical analysis of a quasistatic piezoelectric problem with damage. Comptes Rendus - Mecanique, 2008, 336, 559-564.	2.1	0
143	Numerical analysis of a quasistatic elasto-piezoelectric contact problem with damage. International Journal of Computer Mathematics, 2009, 86, 1888-1900.	1.0	0
144	Analysis of a dynamic viscoelastic-viscoplastic piezoelectric contact problem. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51, 565-586.	0.8	0

#	Article	IF	CITATIONS
145	Numerical analysis of a dynamic problem involving bulk-surface surfactants. Journal of Mathematical Chemistry, 2018, 56, 120-139.	0.7	0
146	Interfacial tension measurements using a new axisymmetric drop/bubble shape technique. RSC Advances, 2019, 9, 16187-16194.	1.7	0
147	CMMSE 2017 – a numerical method based on genetic algorithms for the characterization of viscoelastic materials. International Journal of Computer Mathematics, 2020, 97, 294-311.	1.0	0
148	Numerical analysis of a dualâ€phaseâ€lag model involving two temperatures. Mathematical Methods in the Applied Sciences, 2020, 43, 2759-2771.	1.2	0
149	Numerical analysis of a type III thermo-porous-elastic problem with microtemperatures. Computational and Applied Mathematics, 2020, 39, 1.	1.0	0
150	Numerical analysis of a thermal problem arising in microstretch elastic plates. Journal of Thermal Stresses, 2020, 43, 1069-1082.	1.1	0
151	Two-temperatures thermo-porous-elasticity with microtemperatures. Applied Mathematics Letters, 2021, 111, 106628.	1.5	0
152	AN A PRIORI ERROR ANALYSIS OF A STRAIN GRADIENT MODEL USING <i>C</i> ⁰ INTERIOR PENALTY METHODS. Journal of Applied Analysis and Computation, 2021, 11, 2303-2312.	0.2	0
153	Quasistatic Porous-Thermoelastic Problems: An a Priori Error Analysis. Mathematics, 2021, 9, 1436.	1.1	0
154	A type III porous-thermo-elastic problem with quasi-static microvoids. Meccanica, 0, , 1.	1.2	0
155	An a priori error analysis of a porous strain gradient model. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 0, , e202100213.	0.9	0
156	Numerical analysis of a contact problem for elastic-visco-plastic materials with damage. , 2003, , 337-346.		0
157	Numerical analysis of a dynamic viscoelastic contact problem with damage. Lecture Notes in Applied and Computational Mechanics, 2006, , 63-70.	2.0	0
158	A CONTACT PROBLEM FOR VISCOELASTIC MATERIALS WITH LONG MEMORY INVOLVING DAMAGE. , 2007, , .		0
159	NUMERICAL ANALYSIS OF A FRICTIONLESS PIEZOELECTRIC CONTACT PROBLEM ARISING IN VISCOELASTICITY., 2007, , .		0
160	NUMERICAL RESOLUTION OF AN EXACT HEAT CONDUCTION MODEL WITH A DELAY TERM. Journal of Applied Analysis and Computation, 2019, 9, 332-344.	0.2	0
161	Unilateral Contact and Damage Analysis in Masonry Arches. , 2007, , 357-363.		0
162	A dual-phase-lag porous-thermoelastic problem with microtemperatures. Electronic Research Archive, 2022, 30, 1236-1262.	0.4	0

#	Article	IF	CITATIONS
163	On the numerical approximation of a problem involving a mixture of a MGT viscous material and an elastic solid. Computational and Applied Mathematics, 2022, 41, 1.	1.0	0
164	Numerical analysis of a thermoelastic dielectric problem arising in the Moore–Gibson–Thompson theory. Journal of Computational and Applied Mathematics, 2022, , 114454.	1.1	0