
Ewa StanisÅ,awska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6478662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of hybrid anion exchanger containing cupric oxide for As(III) removal from water. Journal of Hazardous Materials, 2019, 370, 117-125.	12.4	37
2	Cu(II)-Fe(III) oxide doped anion exchangers – Multifunctional composites for arsenite removal from water via As(III) adsorption and oxidation. Journal of Hazardous Materials, 2020, 394, 122527.	12.4	30
3	Synthesis and characterization of CuO-loaded macroreticular anion exchange hybrid polymer. Reactive and Functional Polymers, 2016, 100, 107-115.	4.1	18
4	Iron(III) (hydr)oxide loaded anion exchange hybrid polymers obtained via tetrachloroferrate ionic form—Synthesis optimization and characterization. Journal of Environmental Chemical Engineering, 2017, 5, 3354-3361.	6.7	15
5	CuO-Loaded Macroreticular Anion Exchange Hybrid Polymers Obtained via Tetrachlorocuprate(II) Ionic Form. International Journal of Polymer Science, 2017, 2017, 1-6.	2.7	13
6	CuO and Cu2(OH)3Cl loaded gel-type anion exchange hybrid polymers obtained via tetrachlorocuprate ionic form. Journal of Environmental Chemical Engineering, 2017, 5, 5668-5676.	6.7	11
7	Hybrid polymers containing brochantite/tenorite obtained using gel type anion exchanger. Reactive and Functional Polymers, 2018, 124, 12-19.	4.1	11
8	Freeze dried and thermally dried anion exchanger doped with iron(III) (hydr)oxide – Thermogravimetric studies. Thermochimica Acta, 2019, 680, 178359.	2.7	10
9	MacromolecularN-Chlorosulfonamide as an Oxidant for Residual Nitrites in Aqueous Media. Industrial & Engineering Chemistry Research, 2005, 44, 8530-8534.	3.7	9
10	Potentiometric studies of oxidation–reduction reactions with redox copolymers. Journal of Applied Polymer Science, 2008, 107, 2190-2195.	2.6	9
11	Oxidation of As(III) in aqueous solutions by means of macroporous redox copolymers with N-chlorosulfonamide pendant groups. Journal of Hazardous Materials, 2011, 189, 794-800.	12.4	9
12	Cu2O doped gel-type anion exchanger obtained by reduction of brochantite deposit and its antimicrobial activity. Reactive and Functional Polymers, 2019, 141, 42-49.	4.1	9
13	Deposition of spherical and bracelet-like Cu2O nanoparticles within the matrix of anion exchangers via reduction of tetrachlorocuprate anions. Journal of Environmental Chemical Engineering, 2020, 8, 103722.	6.7	9
14	Using macroporous N-chlorosulfonamide S/DVB copolymer as an aid to iron removal from water. Pure and Applied Chemistry, 2007, 79, 1491-1503.	1.9	8
15	Size-Controlled Transformation of Cu2O into Zero Valent Copper within the Matrix of Anion Exchangers via Green Chemical Reduction. Polymers, 2020, 12, 2629.	4.5	8
16	Anomalous effect of Cu2O and CuO deposit on the porosity of a macroreticular anion exchanger. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	7
17	Hybrid ion exchangers containing Fe(III)-Cu(II) binary oxides obtained using macroreticular anion exchanger. Reactive and Functional Polymers, 2018, 127, 129-138.	4.1	6
18	Cuprite-doped macroreticular anion exchanger obtained by reduction of the Cu(OH)2 deposit. Journal of Environmental Chemical Engineering, 2019, 7, 103198.	6.7	6

Ewa StanisÅ,awska

#	Article	IF	CITATIONS
19	Antimicrobial activity of anion exchangers containing cupric compounds against Enterococcus faecalis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 576, 103-109.	4.7	6
20	Weakly Hydrated Anion Exchangers Doped with Cu2O and Cu0 Particles—Thermogravimetric Studies. Materials, 2021, 14, 925.	2.9	6
21	A macromolecular oxidant, the N,N-dichlorosulfonamide for removal of residual nitrites from aqueous media. Reactive and Functional Polymers, 2006, 66, 609-617.	4.1	5
22	Synthesis and characterization of polymer-based hybrid materials via oxidation of Mn(II) using N-chlorosulphonamide polymers. Materials Chemistry and Physics, 2012, 132, 870-879.	4.0	5
23	Effect of the kind of cupric compound deposit on thermal decomposition of anion exchangers. Thermochimica Acta, 2021, 695, 178812.	2.7	5
24	Synthesis of polymer-based hybrid materials via Mn(II) oxidation with N-bromosulphonamide polymer and their characterization. Journal of Materials Science, 2015, 50, 4300-4311.	3.7	4
25	Oxidation of arsenite in aqueous solutions by redox copolymer with N-bromosulfonamide functional groups. Reactive and Functional Polymers, 2013, 73, 108-113.	4.1	3
26	Redox polymer with <i>N,N</i> â€dichlorosulfonamide functional groups as arsenite oxidant in aqueous solutions. Journal of Applied Polymer Science, 2015, 132, .	2.6	2
27	Copper Rich Composite Materials Based on Carboxylic Cation Exchangers and Their Thermal Transformation. Polymers, 2021, 13, 3199.	4.5	2
28	Main characteristic of N-bromo poly(styrene-co-divinylbenzene) sulphonamide acid: a cation exchanger and redox polymer. Polymer Bulletin, 2017, 74, 1849-1861.	3.3	0