
Petros Kariotoglou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6478603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promoting Students' Interest and Motivation Towards Science Learning: the Role of Personal Needs and Motivation Orientations. Research in Science Education, 2013, 43, 2517-2539.	2.3	26
2	Title is missing!. Research in Science Education, 2003, 33, 71-87.	2.3	17
3	The impact of procedural and epistemological knowledge on conceptual understanding: the case of density and floating–sinking phenomena. Instructional Science, 2016, 44, 315-334.	2.0	16
4	Theoretical Issues Related to Designing and Developing Teaching-Learning Sequences. , 2016, , 11-34.		15
5	Transferring a Teaching Learning Sequence Between Two Different Educational Contexts: the Case of Greece and Finland. International Journal of Science and Mathematics Education, 2018, 16, 443-463.	2.5	9
6	Teaching and Learning Pressure and Fluids. Fluids, 2019, 4, 194.	1.7	9
7	The structure of teachers' beliefs when they plan to visit a museum with their class. Teaching and Teacher Education, 2021, 99, 103254.	3.2	9
8	HOW STUDENT TEACHERS UNDERSTAND DISTANCE FORCE INTERACTIONS IN DIFFERENT CONTEXTS. International Journal of Science and Mathematics Education, 2009, 7, 851-873.	2.5	8
9	Educational software for improving learning aspects of Newton's Third Law for student teachers. Education and Information Technologies, 2009, 14, 163-187.	5.7	6
10	Links Between Teachers' Beliefs and Their Practices in a Science and Technology Museum Visit. International Journal of Science Education, Part B: Communication and Public Engagement, 2013, 3, 246-266.	1.5	6
11	Teaching and Learning Floating and Sinking: Didactic Transformation in a Density-Based Approach. Fluids, 2021, 6, 158.	1.7	5
12	Study of Kindergarten Teachers' Intentions to Choose Content and Teaching Method for Teaching Science. Education Sciences, 2022, 12, 198.	2.6	4
13	What does "Nanoscience –Nanotechnology―mean to primary school teachers?. International Journal of Science and Mathematics Education, 0, , 1.	2.5	3
14	Science Teacher Education: Issues and Proposals. , 2005, , 119-128.		3
15	Modelling the Evolution of Teaching — Learning Sequences: from Discovery to Constructivism. , 2003, , 259-268.		3
16	The Evolutionary Refinement Process of a Teaching-Learning Sequence for Introducing Inquiry Aspects and Density as Materials' Property in Floating/Sinking Phenomena. , 2016, , 167-199.		2
17	Professional Development in Inquiry-Oriented Pedagogical Content Knowledge among Primary School Teachers. International Journal of Science, Mathematics and Technology Learning, 2018, 25, 17-36.	0.2	2
18	Pre-service early childhood teachers' beliefs that influence their intention to use inquiry-based learning methods. International Journal of Early Years Education, 0, , 1-15.	0.8	1

#	Article	IF	CITATIONS
19	Evaluating Inquiry Practices: Can a Professional Development Program Reform Science Teachers' Practices?. Journal of Science Teacher Education, 0, , 1-22.	2.5	1