
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/647855/publications.pdf Version: 2024-02-01

ΤΗΠΑΝ ΥΛΝ ΤΡΑΝ

#	Article	IF	CITATIONS
1	Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel. Surfaces and Interfaces, 2017, 6, 209-217.	1.5	154
2	Gasification of refuse-derived fuel from municipal solid waste for energy production: a review. Environmental Chemistry Letters, 2021, 19, 2127-2140.	8.3	109
3	BiVO4 photocatalysis design and applications to oxygenÂproductionÂand degradation of organic compounds: a review. Environmental Chemistry Letters, 2020, 18, 1779-1801.	8.3	100
4	Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment. Journal of Hazardous Materials, 2021, 404, 124146.	6.5	91
5	Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. Journal of Hazardous Materials, 2021, 420, 126586.	6.5	90
6	A comparative study on the removal efficiency of metal ions (Cu ²⁺ , Ni ²⁺ , and) Tj ETQqO response surface methodology. Adsorption Science and Technology, 2017, 35, 72-85.) 0 0 rgBT / 1.5	/Overlock 1(78
7	CoFe2O4 Nanomaterials: Effect of Annealing Temperature on Characterization, Magnetic, Photocatalytic, and Photo-Fenton Properties. Processes, 2019, 7, 885.	1.3	77
8	Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. Environmental Chemistry Letters, 2022, 20, 1309-1331.	8.3	77
9	Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. Journal of Environmental Sciences, 2020, 93, 137-150.	3.2	76
10	Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review. Environmental Chemistry Letters, 2022, 20, 1929-1963.	8.3	66
11	Enhanced adsorption of methylene blue onto graphene oxide-doped XFe2O4 (XÂ=ÂCo, Mn, Ni) nanocomposites: kinetic, isothermal, thermodynamic and recyclability studies. Research on Chemical Intermediates, 2018, 44, 1661-1687.	1.3	64
12	MIL-53 (Fe)-directed synthesis of hierarchically mesoporous carbon and its utilization for ciprofloxacin antibiotic remediation. Journal of Environmental Chemical Engineering, 2019, 7, 102881.	3.3	64
13	xmins:mml="http://www.w3.org/1998/Wath/Wath/Wath/Wath/Wath/Wath/Wath/Wath		60 row>
14	nanoparticles for photocatelytic degradation of Rhodamine B under visible lightillumination. Microwave-assisted solvothermal fabrication of hybrid zeolitic–imidazolate framework (ZIF-8) for optimizing dyes adsorption efficiency using response surface methodology. Journal of Environmental Chemical Engineering, 2020, 8, 104189.	3.3	58
15	Application of response surface methodology to optimize the fabrication of ZnCl2-activated carbon from sugarcane bagasse for the removal of Cu2+. Water Science and Technology, 2017, 75, 2047-2055.	1.2	57
16	Efficient and recyclable Cu ₂ (BDC) ₂ (BPY)-catalyzed oxidative amidation of terminal alkynes: role of bipyridine ligand. Catalysis Science and Technology, 2015, 5, 851-859.	2.1	56
17	Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review. Science of the Total Environment, 2022, 827, 154160.	3.9	56
18	A five coordination Cu(<scp>ii</scp>) cluster-based MOF and its application in the synthesis of pharmaceuticals via sp ³ C–H/N–H oxidative coupling. Catalysis Science and Technology, 2017, 7, 3453-3458.	2.1	49

#	Article	IF	CITATIONS
19	MIL-53 (Fe) derived magnetic porous carbon as a robust adsorbent for the removal of phenolic compounds under the optimized conditions. Journal of Environmental Chemical Engineering, 2020, 8, 102902.	3.3	48
20	Zeolitic-imidazolate framework-derived N-self-doped porous carbons with ultrahigh theoretical adsorption capacities for tetracycline and ciprofloxacin. Journal of Environmental Chemical Engineering, 2021, 9, 104938.	3.3	48
21	Metal-Organic Framework MIL-53(Fe) as an Adsorbent for Ibuprofen Drug Removal from Aqueous Solutions: Response Surface Modeling and Optimization. Journal of Chemistry, 2019, 2019, 1-11.	0.9	46
22	Facile synthesis of manganese oxide-embedded mesoporous carbons and their adsorbability towards methylene blue. Chemosphere, 2019, 227, 455-461.	4.2	45
23	Amino-functionalized MIL-88B(Fe)-based porous carbon for enhanced adsorption toward ciprofloxacin pharmaceutical from aquatic solutions. Comptes Rendus Chimie, 2019, 22, 804-812.	0.2	43
24	Metal-organic framework HKUST-1-based Cu/Cu2O/CuO@C porous composite: Rapid synthesis and uptake application in antibiotics remediation. Journal of Water Process Engineering, 2020, 36, 101319.	2.6	41
25	Invasive plants as biosorbents for environmental remediation: a review. Environmental Chemistry Letters, 2022, 20, 1421-1451.	8.3	39
26	Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: a review. Environmental Chemistry Letters, 2022, 20, 2531-2571.	8.3	39
27	Response surface methodology-optimized removal of chloramphenicol pharmaceutical from wastewater using Cu3(BTC)2-derived porous carbon as an efficient adsorbent. Comptes Rendus Chimie, 2019, 22, 794-803.	0.2	37
28	Effect of thermolysis condition on characteristics and nonsteroidal anti-inflammatory drugs (NSAIDs) absorbability of Fe-MIL-88B-derived mesoporous carbons. Journal of Environmental Chemical Engineering, 2019, 7, 103356.	3.3	35
29	Engineering conversion of Asteraceae plants into biochars for exploring potential applications: A review. Science of the Total Environment, 2021, 797, 149195.	3.9	33
30	Application of Fe-based metal-organic framework and its pyrolysis products for sulfonamide treatment. Environmental Science and Pollution Research, 2019, 26, 28106-28126.	2.7	32
31	Process Optimization by a Response Surface Methodology for Adsorption of Congo Red Dye onto Exfoliated Graphite-Decorated MnFe2O4 Nanocomposite: The Pivotal Role of Surface Chemistry. Processes, 2019, 7, 305.	1.3	32
32	Tunable Synthesis of Mesoporous Carbons from Fe3O(BDC)3 for Chloramphenicol Antibiotic Remediation. Nanomaterials, 2019, 9, 237.	1.9	32
33	Recyclable Fe3O4@C nanocomposite as potential adsorbent for a wide range of organic dyes and simulated hospital effluents. Environmental Technology and Innovation, 2020, 20, 101122.	3.0	32
34	A hollow mesoporous carbon from metal-organic framework for robust adsorbability of ibuprofen drug in water. Royal Society Open Science, 2019, 6, 190058.	1.1	30
35	Combined Minimum-Run Resolution IV and Central Composite Design for Optimized Removal of the Tetracycline Drug Over Metal–Organic Framework-Templated Porous Carbon. Molecules, 2019, 24, 1887.	1.7	30
36	The Preparation and Characterization of Expanded Graphite via Microwave Irradiation and Conventional Heating for the Purification of Oil Contaminated Water. Journal of Nanoscience and Nanotechnology, 2019, 19, 1122-1125.	0.9	28

#	Article	IF	CITATIONS
37	High performance of Mn2(BDC)2(DMF)2-derived MnO@C nanocomposite as superior remediator for a series of emergent antibiotics. Journal of Molecular Liquids, 2020, 308, 113038.	2.3	28
38	Development of poly (vinyl alcohol)/agar/maltodextrin coating containing silver nanoparticles for banana (Musa acuminate) preservation. Food Packaging and Shelf Life, 2021, 29, 100740.	3.3	27
39	Hexagonal Fe-based MIL-88B nanocrystals with NH2 functional groups accelerating oxytetracycline capture via hydrogen bonding. Surfaces and Interfaces, 2020, 20, 100605.	1.5	26
40	The sunflower plant family for bioenergy, environmental remediation, nanotechnology, medicine, food and agriculture: a review. Environmental Chemistry Letters, 2021, 19, 3701-3726.	8.3	25
41	Enhanced Photocatalytic Activity of Spherical Nd3+ Substituted ZnFe2O4 Nanoparticles. Materials, 2021, 14, 2054.	1.3	23
42	Box–Behnken design, kinetic, and isotherm models for oxytetracycline adsorption onto Co-based ZIF-67. Applied Nanoscience (Switzerland), 2021, 11, 2347-2359.	1.6	23
43	Removal of cationic dye using polyvinyl alcohol membrane functionalized by D-glucose and agar. Journal of Water Process Engineering, 2021, 40, 101982.	2.6	20
44	Facile solvothermal synthesis of highly active monoclinic scheelite BiVO4 for photocatalytic degradation of methylene blue under white LED light irradiation. Arabian Journal of Chemistry, 2020, 13, 8388-8394.	2.3	19
45	Optimization of tetracycline adsorption onto zeolitic–imidazolate framework-based carbon using response surface methodology. Surfaces and Interfaces, 2022, 28, 101549.	1.5	19
46	Central composite design for optimizing the organic dyes remediation utilizing novel graphene oxide@CoFe2O4 nanocomposite. Surfaces and Interfaces, 2020, 21, 100687.	1.5	18
47	Glycerolâ€plasticized chitosan film for the preservation of orange. Journal of Food Safety, 2022, 42, e12943.	1.1	16
48	Gold@silica catalyst: Porosity of silica shells switches catalytic reactions. Chemical Physics Letters, 2019, 728, 80-86.	1.2	12
49	Adsorption behavior of Congo red dye from aqueous solutions onto exfoliated graphite as an adsorbent: Kinetic and isotherm studies. Materials Today: Proceedings, 2019, 18, 4449-4457.	0.9	12
50	Advanced Ti _{0.7} W _{0.3} O ₂ Nanoparticles Prepared via Solvothermal Process Using Titanium Tetrachloride and Tungsten Hexachloride as Precursors. Journal of Nanoscience and Nanotechnology, 2018, 18, 7177-7182.	0.9	11
51	Highly efficient one-pot conversion of saccharides to 2,5-dimethylfuran using P-UiO-66 and Ni–Co@NC noble metal-free catalysts. Green Chemistry, 2022, 24, 5070-5076.	4.6	11
52	Kinetics, Isotherm, Thermodynamics, and Recyclability of Exfoliated Graphene-Decorated MnFe ₂ O ₄ Nanocomposite Towards Congo Red Dye. Journal of Chemistry, 2019, 2019, 1-16.	0.9	9
53	Kinetic, equilibrium, adsorption mechanisms of cationic and anionic dyes on N-doped porous carbons produced from zeolitic-imidazolate framework. International Journal of Environmental Science and Technology, 2022, 19, 10723-10736.	1.8	9
54	The Synthesis of N-(Pyridin-2-yl)-Benzamides from Aminopyridine and Trans-Beta-Nitrostyrene by Fe2Ni-BDC Bimetallic Metal–Organic Frameworks. Processes, 2019, 7, 789.	1.3	8

#	Article	IF	CITATIONS
55	Crystal violet degradation over BiVO ₄ photocatalyst under visible light irradiation. Chemical Engineering Communications, 2021, 208, 530-538.	1.5	8
56	Development of Antibacterial, Antioxidant, and UV-Barrier Chitosan Film Incorporated with Piper betle Linn Oil as Active Biodegradable Packaging Material. Coatings, 2021, 11, 351.	1.2	8
57	Effective mitigation of single-component and mixed textile dyes from aqueous media using recyclable graphene-based nanocomposite. Environmental Science and Pollution Research, 2022, 29, 32120-32141.	2.7	8
58	cis-Cyclooctene epoxidation catalyzed by bulk metallophthalocyanines, metallohexadecafluorophthalocyanines and hollow silica-supported metallohexadecafluorophthalocyanine. Journal of Industrial and Engineering Chemistry, 2016, 40, 40-46.	2.9	7
59	Response surface methodology modeling for methylene blue removal by chemically modified porous carbon: Adsorption mechanism and role of surface functional groups. Separation Science and Technology, 2021, 56, 2232-2242.	1.3	7
60	Synthesis and magnetic properties of graphene oxide-decorated cobalt, manganese and nickel ferrite nanoparticles prepared by polymerized route. IOP Conference Series: Materials Science and Engineering, 2019, 479, 012114.	0.3	6
61	A Simple Route for the Synthesis of Fe/C composite derived from the metal-organic framework MIL-53 (Fe). Materials Today: Proceedings, 2019, 18, 2422-2429.	0.9	5
62	Development of Response Surface Methodology for Optimization of Congo Red Adsorption Utilizing Exfoliated Graphite As An Efficient Adsorbent. Materials Today: Proceedings, 2020, 22, 2341-2350.	0.9	5
63	Linearized and nonlinearized modellings for comparative uptake assessment of metal-organic framework-derived nanocomposite towards sulfonamide antibiotics. Environmental Science and Pollution Research, 2021, 28, 63448-63463.	2.7	5
64	Agar/maltodextrin/poly(vinyl alcohol) walled montmorillonite composites for removal of methylene blue from aqueous solutions. Surfaces and Interfaces, 2021, 26, 101410.	1.5	5
65	Decoration of silver nanoparticles on nitrogen-doped nanoporous carbon derived from zeolitic imidazole framework-8 (ZIF-8) <i>via in situ</i> auto-reduction. RSC Advances, 2021, 11, 6614-6619.	1.7	4
66	A chemometric approach based on Box–Behnken and response surface methodology for design and optimization of ciprofloxacin adsorption from water. Chemical Papers, 2022, 76, 4873-4883.	1.0	4
67	Conversion of Carbon Dioxide into Formaldehyde. Environmental Chemistry for A Sustainable World, 2020, , 159-183.	0.3	2