Steffi Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6478440/publications.pdf Version: 2024-02-01

STEEL KDALLSE

#	Article	IF	CITATIONS
1	Light-Addressable Electrochemical Sensors toward Spatially Resolved Biosensing and Imaging Applications. ACS Sensors, 2022, 7, 1791-1807.	7.8	13
2	Photoelectrochemical imaging system with high spatiotemporal resolution for visualizing dynamic cellular responses. Biosensors and Bioelectronics, 2021, 180, 113121.	10.1	23
3	Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519.	12.2	21
4	Ammonia Gas Sensor Response of a Vertical Zinc Oxide Nanorod-Gold Junction Diode at Room Temperature. ACS Sensors, 2020, 5, 3568-3575.	7.8	47
5	Flexible and Stretchable Selfâ€Powered Multiâ€Sensors Based on the Nâ€Type Thermoelectric Response of Polyurethane/Na <i>_x</i> (Niâ€ett) <i>_n</i> Composites. Advanced Electronic Materials, 2019, 5, 1900582.	5.1	28
6	InGaN as a Substrate for AC Photoelectrochemical Imaging. Sensors, 2019, 19, 4386.	3.8	18
7	Modulated light-activated electrochemistry at silicon functionalized with metal-organic frameworks towards addressable DNA chips. Biosensors and Bioelectronics, 2019, 146, 111750.	10.1	18
8	Peptide Cross-Linked Poly(2-oxazoline) as a Sensor Material for the Detection of Proteases with a Quartz Crystal Microbalance. Biomacromolecules, 2019, 20, 2506-2514.	5.4	17
9	Peptide Cross-Linked Poly (Ethylene Glycol) Hydrogel Films as Biosensor Coatings for the Detection of Collagenase. Sensors, 2019, 19, 1677.	3.8	29
10	Photoelectrochemical Imaging System for the Mapping of Cell Surface Charges. Analytical Chemistry, 2019, 91, 5896-5903.	6.5	38
11	Surface modification and construction of LAPS towards biosensing applications. Sensors and Actuators B: Chemical, 2018, 265, 161-173.	7.8	20
12	Photoelectrochemical response of carbon dots (CDs) derived from chitosan and their use in electrochemical imaging. Materials Horizons, 2018, 5, 423-428.	12.2	55
13	Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behaviour. Journal of Materials Chemistry C, 2018, 6, 1815-1821.	5.5	129
14	(Bio-)chemical Sensing and Imaging by LAPS and SPIM. Springer Series on Chemical Sensors and Biosensors, 2018, , 103-132.	0.5	0
15	Collagenase Biosensor Based on the Degradation of Peptide Cross-Linked Poly(Ethylene Glycol) Hydrogel Films. Proceedings (mdpi), 2018, 2, .	0.2	2
16	The Effect of Semiconductor Morphology on the Spatial Resolution of ZnO Based Light-Addressable Potentiometric Sensors. Proceedings (mdpi), 2018, 2, 917.	0.2	1
17	Photoelectrochemical Imaging Using Carbon Dots (CDs) Derived from Chitosan. Proceedings (mdpi), 2018, 2, .	0.2	2
18	Light-Addressable Potentiometric Sensors Using ZnO Nanorods as the Sensor Substrate for Bioanalytical Applications. Analytical Chemistry, 2018, 90, 8708-8715.	6.5	30

Steffi Krause

#	Article	IF	CITATIONS
19	Biological imaging using light-addressable potentiometric sensors and scanning photo-induced impedance microscopy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170130.	2.1	21
20	Copper Contamination of Self-Assembled Organic Monolayer Modified Silicon Surfaces Following a "Click―Reaction Characterized with LAPS and SPIM. Langmuir, 2017, 33, 3170-3177.	3.5	16
21	LAPS and SPIM Imaging Using ITO-Coated Glass as the Substrate Material. Analytical Chemistry, 2017, 89, 8129-8133.	6.5	21
22	The effect of gold nanoparticles on the impedance of microcapsules visualized by scanning photo-induced impedance microscopy. Electrochimica Acta, 2016, 208, 39-46.	5.2	25
23	Image detection of yeast Saccharomyces cerevisiae by light-addressable potentiometric sensors (LAPS). Electrochemistry Communications, 2016, 72, 41-45.	4.7	25
24	Disposable MMP-9 sensor based on the degradation of peptide cross-linked hydrogel films using electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 2015, 68, 660-667.	10.1	69
25	Incorporation of Ag nanowires in CuWO ₄ for improved visible light-induced photoanode performance. Journal of Materials Chemistry A, 2015, 3, 9638-9644.	10.3	55
26	"Click―Patterning of Self-Assembled Monolayers on Hydrogen-Terminated Silicon Surfaces and Their Characterization Using Light-Addressable Potentiometric Sensors. Langmuir, 2015, 31, 9646-9654.	3.5	27
27	High-sensitivity light-addressable potentiometric sensors using silicon on sapphire functionalized with self-assembled organic monolayers. Sensors and Actuators B: Chemical, 2015, 209, 230-236.	7.8	53
28	α-Amylase sensor based on the degradation of oligosaccharide hydrogel films monitored with a quartz crystal sensor. Biosensors and Bioelectronics, 2015, 67, 540-545.	10.1	19
29	Degradation Behaviour of Thin Polymer Films of Poly(Amide Ester) Hydrogel Using Quartz Crystal Microbalance. Advanced Materials Research, 2013, 812, 38-45.	0.3	0
30	A label-free aptasensor for the sensitive and specific detection of cocaine using supramolecular aptamer fragments/target complex by electrochemical impedance spectroscopy. Talanta, 2012, 92, 65-71.	5.5	43
31	Generic protease detection technology for monitoring periodontal disease. Faraday Discussions, 2011, 149, 37-47.	3.2	10
32	High resolution LAPS and SPIM. Electrochemistry Communications, 2010, 12, 758-760.	4.7	53
33	Selected Papers from the Second International Conference on Optical, Optoelectronic and Photonic Materials and Applications, 2007. Journal of Materials Science: Materials in Electronics, 2009, 20, 1-2.	2.2	9
34	Sensor materials for the detection of proteases. Biosensors and Bioelectronics, 2009, 24, 2113-2118.	10.1	38
35	A peptide cross-linked polyacrylamide hydrogel for the detection of human neutrophil elastase. Electrochimica Acta, 2009, 54, 4985-4990.	5.2	18
36	Repair of thin thermally grown silicon dioxide by anodic oxidation. Electrochimica Acta, 2008, 53, 3395-3402.	5.2	20

STEFFI KRAUSE

#	Article	IF	CITATIONS
37	Scanning Photoinduced Impedance Microscopy Using Amorphous Silicon Photodiode Structures. Analytical Chemistry, 2007, 79, 6208-6214.	6.5	10
38	Biosensor Arrays Based on the Degradation of Thin Polymer Films Interrogated by Scanning Photoinduced Impedance Microscopy. Analytical Chemistry, 2007, 79, 8974-8978.	6.5	13
39	Biosensor arrays based on the degradation of thin polymer films interrogated by Scanning Photo-induced Impedance Microscopy. , 2006, , .		Ο
40	Scanning Photo-Induced Impedance Microscopy—Resolution studies and polymer characterization. Electrochimica Acta, 2006, 51, 1423-1430.	5.2	33
41	High resolution LAPS using amorphous silicon as the semiconductor material. Sensors and Actuators B: Chemical, 2004, 103, 436-441.	7.8	55
42	Simultaneous Quartz Crystal Microbalance Impedance and Electrochemical Impedance Measurements. Investigation into the Degradation of Thin Polymer Films. Analytical Chemistry, 2002, 74, 3304-3311.	6.5	62
43	Scanning photo-induced impedance microscopy—an impedance based imaging technique. Electrochimica Acta, 2002, 47, 2143-2148.	5.2	36
44	Re-activation of an all solid state oxygen sensor. Analytica Chimica Acta, 2001, 437, 183-190.	5.4	11
45	Biosensor based on enzyme-catalysed degradation of thin polymer films. Biosensors and Bioelectronics, 2001, 16, 709-714.	10.1	42
46	Photocurrent measurements for laterally resolved interface characterization. Fresenius' Journal of Analytical Chemistry, 2000, 367, 329-333.	1.5	36
47	A Transducer Based on Enzyme-Induced Degradation of Thin Polymer Films Monitored by Surface Plasmon Resonance. Analytical Chemistry, 2000, 72, 5225-5232.	6.5	33
48	Electrochemical Sensor for Measurement of Urea and Creatinine in Serum Based on ac Impedance Measurement of Enzyme-Catalyzed Polymer Transformation. Analytical Chemistry, 1999, 71, 1940-1946.	6.5	89
49	Behaviour of pHsensitive polymers on metal electrodes. Journal of Applied Electrochemistry, 1997, 27, 291-298.	2.9	9
50	Monitoring of HF and F2 using a field-effect sensor. Sensors and Actuators B: Chemical, 1995, 24, 194-196.	7.8	20
51	Electrochemical Sensors Based on Impedance Measurement of Enzyme-Catalyzed Polymer Dissolution: Theory and Applications. Analytical Chemistry, 1995, 67, 3928-3935.	6.5	84
52	Improved long-term stability for an LaF3 based oxygen sensor. Sensors and Actuators B: Chemical, 1994, 18, 148-154.	7.8	19
53	Dynamic response of a low-temperature field-effect oxygen sensor. Sensors and Actuators B: Chemical, 1993, 14, 499-500.	7.8	2
54	Influence of the LaF3/metal interface on the properties of a low temperature oxygen sensor. Sensors and Actuators B: Chemical, 1993, 16, 252-255.	7.8	7

Steffi Krause

#	Article	IF	CITATIONS
55	A low-temperature oxygen sensor based on the Si/LaF3/Pt capacitive structure. Sensors and Actuators B: Chemical, 1992, 9, 191-196.	7.8	17
56	Diversiform applications of LaF3 for chemical semiconductor sensors. Sensors and Actuators B: Chemical, 1992, 7, 497-500.	7.8	6
57	Chemical sensitivity of an ISFET with Ta2O5 membrane in strong acid and alkaline solutions. Sensors and Actuators B: Chemical, 1991, 3, 75-81.	7.8	35