Ki Tae Nam

List of Publications by Citations

Source: https://exaly.com/author-pdf/647779/ki-tae-nam-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56 203 11,351 102 h-index g-index citations papers 6.49 11.9 13,471 220 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
203	Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. <i>Science</i> , 2006 , 312, 885-8	33.3	1654
202	Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. <i>Nature</i> , 2018 , 556, 360-365	50.4	446
201	Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. <i>Nature Materials</i> , 2010 , 9, 454-60	27	338
200	Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. <i>Nature Energy</i> , 2017 , 2,	62.3	301
199	Spontaneous assembly of viruses on multilayered polymer surfaces. <i>Nature Materials</i> , 2006 , 5, 234-40	27	285
198	Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. <i>Nature Communications</i> , 2015 , 6, 8253	17.4	283
197	Reversible and cooperative photoactivation of single-atom Cu/TiO photocatalysts. <i>Nature Materials</i> , 2019 , 18, 620-626	27	275
196	Hydrated manganese(II) phosphate (Mn(PO)IBHD) as a water oxidation catalyst. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7435-43	16.4	266
195	Organolead Halide Perovskites for Low Operating Voltage Multilevel Resistive Switching. <i>Advanced Materials</i> , 2016 , 28, 6562-7	24	219
194	Concave Rhombic Dodecahedral Au Nanocatalyst with Multiple High-Index Facets for CO2 Reduction. <i>ACS Nano</i> , 2015 , 9, 8384-93	16.7	199
193	Morphology-Directed Selective Production of Ethylene or Ethane from CO on a Cu Mesopore Electrode. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 796-800	16.4	183
192	Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. <i>Energy and Environmental Science</i> , 2016 , 9, 2240-2248	35.4	150
191	Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. <i>Science Advances</i> , 2015 , 1, e1500701	14.3	145
190	Selective Electrochemical Production of Formate from Carbon Dioxide with Bismuth-Based Catalysts in an Aqueous Electrolyte. <i>ACS Catalysis</i> , 2018 , 8, 931-937	13.1	132
189	Stamped microbattery electrodes based on self-assembled M13 viruses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 17227-31	11.5	127
188	Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano, 2008, 2, 1480-	6 16.7	127
187	Subwavelength light focusing using random nanoparticles. <i>Nature Photonics</i> , 2013 , 7, 454-458	33.9	125

(2015-2017)

186	Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light. <i>ACS Nano</i> , 2017 , 11, 9382-9389	16.7	122
185	Synthesis and microcontact printing of dual end-functionalized mucin-like glycopolymers for microarray applications. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 4973-6	16.4	121
184	N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. <i>Energy and Environmental Science</i> , 2013 , 6, 3658	35.4	119
183	Layer-by-Layer Surface Modification and Patterned Electrostatic Deposition of Quantum Dots. <i>Nano Letters</i> , 2004 , 4, 1421-1425	11.5	118
182	A new water oxidation catalyst: lithium manganese pyrophosphate with tunable Mn valency. Journal of the American Chemical Society, 2014 , 136, 4201-11	16.4	116
181	A new hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 2117-24	3.6	115
180	N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production. <i>Energy and Environmental Science</i> , 2015 , 8, 1329-1338	35.4	113
179	Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8322-8	16.4	113
178	Defining a Materials Database for the Design of Copper Binary Alloy Catalysts for Electrochemical CO Conversion. <i>Advanced Materials</i> , 2018 , 30, e1704717	24	110
177	Mn5O8 Nanoparticles as Efficient Water Oxidation Catalysts at Neutral pH. ACS Catalysis, 2015 , 5, 4624	-4628	109
176	Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. <i>ACS Nano</i> , 2014 , 8, 634-41	16.7	103
175	Mechanistic Investigation of Water Oxidation Catalyzed by Uniform, Assembled MnO Nanoparticles. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2277-2285	16.4	102
174	One-step synthesis of N-doped graphene quantum sheets from monolayer graphene by nitrogen plasma. <i>Advanced Materials</i> , 2014 , 26, 3501-5	24	98
173	Achieving highly efficient CO2 to CO electroreduction exceeding 300 mA cm2 with single-atom nickel electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 10651-10661	13	97
172	"Crypto-Display" in Dual-Mode Metasurfaces by Simultaneous Control of Phase and Spectral Responses. <i>ACS Nano</i> , 2018 , 12, 6421-6428	16.7	94
171	Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis. <i>Scientific Reports</i> , 2015 , 5, 10279	4.9	90
170	Genetically Driven Assembly of Nanorings Based on the M13 Virus. <i>Nano Letters</i> , 2004 , 4, 23-27	11.5	89
169	Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. <i>Biomaterials</i> , 2015 , 65, 32-42	15.6	86

168	Outfitting Next Generation Displays with Optical Metasurfaces. ACS Photonics, 2018, 5, 3876-3895	6.3	85
167	BMHP1-derived self-assembling peptides: hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications. <i>ACS Nano</i> , 2011 , 5, 1845-59	16.7	84
166	Current Status and Bioinspired Perspective of Electrochemical Conversion of CO to a Long-Chain Hydrocarbon. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 538-545	6.4	83
165	New challenges of electrokinetic studies in investigating the reaction mechanism of electrochemical CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 14043-14057	13	83
164	Tyrosine-mediated two-dimensional peptide assembly and its role as a bio-inspired catalytic scaffold. <i>Nature Communications</i> , 2014 , 5, 3665	17.4	83
163	Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature. <i>Advanced Healthcare Materials</i> , 2016 , 5, 119-27	10.1	83
162	Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. <i>Biomaterials</i> , 2017 , 112, 31-43	15.6	82
161	Chondroitin Sulfate-Based Biomineralizing Surface Hydrogels for Bone Tissue Engineering. <i>ACS Applied Materials & District Materials & </i>	9.5	78
160	In Vitro and In Vivo Evaluation of Whitlockite Biocompatibility: Comparative Study with Hydroxyapatite and Erricalcium Phosphate. <i>Advanced Healthcare Materials</i> , 2016 , 5, 128-36	10.1	78
159	Solar Water Splitting: Efficient Water Splitting Cascade Photoanodes with Ligand-Engineered MnO Cocatalysts (Adv. Sci. 10/2018). <i>Advanced Science</i> , 2018 , 5, 1870061	13.6	78
158	A ferroelectric photocatalyst for enhancing hydrogen evolution: polarized particulate suspension. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 10408-13	3.6	74
157	Folding of a single-chain, information-rich polypeptoid sequence into a highly ordered nanosheet. <i>Biopolymers</i> , 2011 , 96, 586-95	2.2	74
156	Controlling surface mobility in interdiffusing polyelectrolyte multilayers. ACS Nano, 2008, 2, 561-71	16.7	73
155	An iron oxide photoanode with hierarchical nanostructure for efficient water oxidation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2297-2305	13	68
154	Pragmatic Metasurface Hologram at Visible Wavelength: The Balance between Diffraction Efficiency and Fabrication Compatibility. <i>ACS Photonics</i> , 2018 , 5, 1643-1647	6.3	66
153	Graphene Quantum Sheet Catalyzed Silicon Photocathode for Selective CO2 Conversion to CO. <i>Advanced Functional Materials</i> , 2016 , 26, 233-242	15.6	66
152	Solvent-assisted patterning of polyelectrolyte multilayers and selective deposition of virus assemblies. <i>Nano Letters</i> , 2008 , 8, 1081-9	11.5	62
151	Highly Stretchable and Notch-Insensitive Hydrogel Based on Polyacrylamide and Milk Protein. <i>ACS Applied Materials & District Science (Note: Applied Materials & District Science)</i> 1 (2016) 1 (2016) 2 (9.5	60

150	Full-field subwavelength imaging using a scattering superlens. <i>Physical Review Letters</i> , 2014 , 113, 1139	0] .4	58	
149	Amorphous Cobalt Phyllosilicate with Layered Crystalline Motifs as Water Oxidation Catalyst. <i>Advanced Materials</i> , 2017 , 29, 1606893	24	57	
148	Arginine-Presenting Peptide Hydrogels Decorated with Hydroxyapatite as Biomimetic Scaffolds for Bone Regeneration. <i>Biomacromolecules</i> , 2017 , 18, 3541-3550	6.9	57	
147	Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators. <i>PLoS ONE</i> , 2015 , 10, e0118131	3.7	55	
146	Reaction Mechanisms of the Electrochemical Conversion of Carbon Dioxide to Formic Acid on Tin Oxide Electrodes. <i>ChemElectroChem</i> , 2017 , 4, 2130-2136	4.3	54	
145	Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. <i>Nature Communications</i> , 2020 , 11, 263	17.4	54	
144	Hybrid Z-Scheme Using Photosystem I and BiVO4 for Hydrogen Production. <i>Advanced Functional Materials</i> , 2015 , 25, 2369-2377	15.6	53	
143	Plasmonic metamaterials for chiral sensing applications. <i>Nanoscale</i> , 2020 , 12, 58-66	7.7	52	
142	Nanostructural dependence of hydrogen production in silicon photocathodes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5414	13	51	
141	Chemically Deposited Amorphous Zn-Doped NiFeOxHy for Enhanced Water Oxidation. <i>ACS Catalysis</i> , 2020 , 10, 235-244	13.1	50	
140	Extended gold nano-morphology diagram: synthesis of rhombic dodecahedra using CTAB and ascorbic acid. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 6861	7.1	48	
139	Catalytic synergy effect of MoS2/reduced graphene oxide hybrids for a highly efficient hydrogen evolution reaction. <i>RSC Advances</i> , 2017 , 7, 5480-5487	3.7	47	
138	Tyrosine-Rich Peptides as a Platform for Assembly and Material Synthesis. <i>Advanced Science</i> , 2019 , 6, 1801255	13.6	47	
137	Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate. <i>Nature Communications</i> , 2019 , 10, 3919	17.4	45	
136	Hybrid system of semiconductor and photosynthetic protein. <i>Nanotechnology</i> , 2014 , 25, 342001	3.4	45	
135	Stretching-Induced Growth of PEDOT-Rich Cores: A New Mechanism for Strain-Dependent Resistivity Change in PEDOT:PSS Films. <i>Advanced Functional Materials</i> , 2013 , 23, 4020-4027	15.6	45	
134	Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1342-1349	7.3	44	
133	Tunable Metasurfaces: Kerker-Conditioned Dynamic Cryptographic Nanoprints (Advanced Optical Materials 4/2019). <i>Advanced Optical Materials</i> , 2019 , 7, 1970016	8.1	42	

132	Fatigue-free, electrically reliable copper electrode with nanohole array. Small, 2012, 8, 3300-6	11	42
131	Manganese oxide-based heterogeneous electrocatalysts for water oxidation. <i>Energy and Environmental Science</i> , 2020 , 13, 2310-2340	35.4	41
130	A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 94	7 7 3948	5 ⁴¹
129	Geometric metasurface enabling polarization independent beam splitting. <i>Scientific Reports</i> , 2018 , 8, 9468	4.9	40
128	Tris(2-benzimidazolylmethyl)amine-Directed Synthesis of Single-Atom Nickel Catalysts for Electrochemical CO Production from CO. <i>Chemistry - A European Journal</i> , 2018 , 24, 18444-18454	4.8	40
127	Design Principle and Loss Engineering for Photovoltaic-Electrolysis Cell System. <i>ACS Omega</i> , 2017 , 2, 1009-1018	3.9	39
126	Improved diffusion barrier by stuffing the grain boundaries of TiN with a thin Al interlayer for Cu metallization. <i>Applied Physics Letters</i> , 2001 , 79, 2549-2551	3.4	39
125	Sulfur-Modified Graphitic Carbon Nitride Nanostructures as an Efficient Electrocatalyst for Water Oxidation. <i>Small</i> , 2017 , 13, 1603893	11	38
124	Mechanistic Investigation of Biomass Oxidation Using Nickel Oxide Nanoparticles in a CO-Saturated Electrolyte for Paired Electrolysis. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 2941-2948	6.4	36
123	Chiral Scatterometry on Chemically Synthesized Single Plasmonic Nanoparticles. <i>ACS Nano</i> , 2019 , 13, 8659-8668	16.7	36
122	Virus templated gold nanocube chain for SERS nanoprobe. <i>Small</i> , 2014 , 10, 3007-11	11	36
121	Kerker-Conditioned Dynamic Cryptographic Nanoprints. <i>Advanced Optical Materials</i> , 2018 , 7, 1801070	8.1	35
120	Morphology-Directed Selective Production of Ethylene or Ethane from CO2 on a Cu Mesopore Electrode. <i>Angewandte Chemie</i> , 2017 , 129, 814-818	3.6	34
119	Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering. <i>Scientific Reports</i> , 2014 , 4, 5090	4.9	34
118	Biomolecule-Enabled Chiral Assembly of Plasmonic Nanostructures. <i>ChemNanoMat</i> , 2017 , 3, 685-697	3.5	34
117	Electric-Field-Assisted Layer-by-Layer Assembly of Weakly Charged Polyelectrolyte Multilayers. <i>Macromolecules</i> , 2011 , 44, 2866-2872	5.5	34
116	Water-Floating Giant Nanosheets from Helical Peptide Pentamers. ACS Nano, 2016, 10, 8263-70	16.7	33
115	Wavelength-decoupled geometric metasurfaces by arbitrary dispersion control. <i>Communications Physics</i> , 2019 , 2,	5.4	33

114	Chiral Surface and Geometry of Metal Nanocrystals. <i>Advanced Materials</i> , 2020 , 32, e1905758	24	33
113	Uniform, Assembled 4 nm Mn3O4 Nanoparticles as Efficient Water Oxidation Electrocatalysts at Neutral pH. <i>Advanced Functional Materials</i> , 2020 , 30, 1910424	15.6	32
112	Enhanced performance of NaTaO3 using molecular co-catalyst [Mo3S4]4+ for water splitting into H2 and O2. <i>Chemical Communications</i> , 2012 , 48, 10452-4	5.8	32
111	Protein/peptide based nanomaterials for energy application. <i>Current Opinion in Biotechnology</i> , 2013 , 24, 599-605	11.4	31
110	Revealing Structural Disorder in Hydrogenated Amorphous Silicon for a Low-Loss Photonic Platform at Visible Frequencies. <i>Advanced Materials</i> , 2021 , 33, e2005893	24	31
109	Uniform Chiral Gap Synthesis for High Dissymmetry Factor in Single Plasmonic Gold Nanoparticle. <i>ACS Nano</i> , 2020 , 14, 3595-3602	16.7	28
108	p-Type CuBi2O4 thin films prepared by flux-mediated one-pot solution process with improved structural and photoelectrochemical characteristics. <i>Materials Letters</i> , 2017 , 188, 192-196	3.3	27
107	Active Color Control in a Metasurface by Polarization Rotation. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 982	2.6	27
106	Synthetic Mechanism Discovery of Monophase Cuprous Oxide for Record High Photoelectrochemical Conversion of CO to Methanol in Water. <i>ACS Nano</i> , 2018 , 12, 8187-8196	16.7	24
105	Growth Mechanism of Strain-Dependent Morphological Change in PEDOT:PSS Films. <i>Scientific Reports</i> , 2016 , 6, 25332	4.9	22
104	Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound. <i>Angewandte Chemie</i> , 2013 , 125, 8480-8486	3.6	22
103	Electrocatalytic Reduction of CO to Ethylene by Molecular Cu-Complex Immobilized on Graphitized Mesoporous Carbon. <i>Small</i> , 2020 , 16, e2000955	11	21
102	Metasurface zone plate for light manipulation in vectorial regime. Communications Physics, 2019, 2,	5.4	21
101	Bioinspired Toolkit Based on Intermolecular Encoder toward Evolutionary 4D Chiral Plasmonic Materials. <i>Accounts of Chemical Research</i> , 2019 , 52, 2768-2783	24.3	20
100	Efficient Water Splitting Cascade Photoanodes with Ligand-Engineered MnO Cocatalysts. <i>Advanced Science</i> , 2018 , 5, 1800727	13.6	20
99	Multilayer diffusion barrier for copper metallization using a thin interlayer metal (M=Ru, Cr, and Zr) between two TiN films. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2003 , 21, 804		2 0
98	Electrochemical CN Bond Formation for Sustainable Amine Synthesis. <i>Trends in Chemistry</i> , 2020 , 2, 1004	l-1 .0 .89	20
97	Involvement of high-valent manganese-oxo intermediates in oxidation reactions: realisation in nature, nano and molecular systems. <i>Nano Convergence</i> , 2018 , 5, 18	9.2	20

96	Optimization of Al interlayer thickness for the multilayer diffusion barrier scheme in Cu metallization. <i>Journal of Applied Physics</i> , 2002 , 92, 1099-1105	2.5	19
95	Plasmon Enhanced Fluorescence Based on Porphyrin-Peptoid Hybridized Gold Nanoparticle Platform. <i>Small</i> , 2017 , 13, 1700071	11	18
94	Mechanistic Investigation with Kinetic Parameters on Water Oxidation Catalyzed by Manganese Oxide Nanoparticle Film. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 10595-10604	8.3	18
93	Identifying peptide sequences that can control the assembly of gold nanostructures. <i>Molecular Systems Design and Engineering</i> , 2018 , 3, 581-590	4.6	18
92	Enhanced conductivity of solution-processed indium tin oxide nanoparticle films by oxygen partial pressure controlled annealing. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5953	7.1	18
91	Self-assembled magnetic nanospheres with three-dimensional magnetic vortex. <i>Applied Physics Letters</i> , 2014 , 105, 232402	3.4	18
90	Water Oxidation Mechanism for 3d Transition Metal Oxide Catalysts under Neutral Condition. Journal of the Korean Ceramic Society, 2017 , 54, 1-8	2.2	18
89	Highly Active MnO Catalysts Integrated onto Fe2O3 Nanorods for Efficient Water Splitting. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600176	4.6	18
88	Recent advances and perspectives of halide perovskite photocatalyst. <i>Current Opinion in Electrochemistry</i> , 2018 , 11, 98-104	7.2	18
87	Cysteine Induced Chiral Morphology in Palladium Nanoparticle. <i>Particle and Particle Systems Characterization</i> , 2019 , 36, 1900062	3.1	17
86	Importance of Entropic Contribution to Electrochemical Water Oxidation Catalysis. <i>ACS Energy Letters</i> , 2019 , 4, 1918-1929	20.1	17
85	Proton Conduction in a Tyrosine-Rich Peptide/Manganese Oxide Hybrid Nanofilm. <i>Advanced Functional Materials</i> , 2017 , 27, 1702185	15.6	17
84	Rise of nano effects in electrode during electrocatalytic CO conversion. <i>Nanotechnology</i> , 2017 , 28, 3520	09.14	17
83	Failure mechanism of a multilayer (TiN/Al/TiN) diffusion barrier between copper and silicon. <i>Journal of Applied Physics</i> , 2002 , 92, 5512-5519	2.5	17
82	Capturing Manganese Oxide Intermediates in Electrochemical Water Oxidation at Neutral pH by In Situ Raman Spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4673-4681	16.4	17
81	Single Nanoparticle Chiroptics in a Liquid: Optical Activity in Hyper-Rayleigh Scattering from Au Helicoids. <i>Nano Letters</i> , 2020 , 20, 5792-5798	11.5	16
80	Nickel-Doping Effect on Mn3O4 Nanoparticles for Electrochemical Water Oxidation under Neutral Condition. <i>Small Methods</i> , 2020 , 4, 1900733	12.8	16
79	Self-assembly of "S-bilayers", a step toward expanding the dimensionality of S-layer assemblies. <i>ACS Nano</i> , 2013 , 7, 4946-53	16.7	16

(2020-2018)

78	Hierarchical carbon-silicon nanowire heterostructures for the hydrogen evolution reaction. <i>Nanoscale</i> , 2018 , 10, 13936-13941	7.7	16
77	Double-Layer Graphene Outperforming Monolayer as Catalyst on Silicon Photocathode for Hydrogen Production. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 3570-3580	9.5	15
76	Chirality control of inorganic materials and metals by peptides or amino acids. <i>Materials Advances</i> , 2020 , 1, 512-524	3.3	15
<i>75</i>	EGlutamylcysteine- and Cysteinylglycine-Directed Growth of Chiral Gold Nanoparticles and their Crystallographic Analysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12976-12983	16.4	15
74	Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10173-10178	7.1	15
73	Highly Selective Active Chlorine Generation Electrocatalyzed by CoO Nanoparticles: Mechanistic Investigation through in Situ Electrokinetic and Spectroscopic Analyses. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1226-1233	6.4	15
72	Physically Transient Field-Effect Transistors Based on Black Phosphorus. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 42630-42636	9.5	15
71	Importance of Interfacial Band Structure between the Substrate and Mn3O4 Nanocatalysts during Electrochemical Water Oxidation. <i>ACS Catalysis</i> , 2020 , 10, 1237-1245	13.1	14
70	Electronic interaction between transition metal single-atoms and anatase TiO2 boosts CO2 photoreduction with H2O. <i>Energy and Environmental Science</i> ,	35.4	14
69	Tailoring a Tyrosine-Rich Peptide into Size- and Thickness-Controllable Nanofilms. <i>ACS Omega</i> , 2018 , 3, 3901-3907	3.9	13
68	Material science lesson from the biological photosystem. <i>Nano Convergence</i> , 2016 , 3, 19	9.2	12
67	Spontaneously polarized lithium-doped zinc oxide nanowires as photoanodes for electrical water splitting. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3223-3227	13	12
66	Proton-enabled activation of peptide materials for biological bimodal memory. <i>Nature Communications</i> , 2020 , 11, 5896	17.4	12
65	Hierarchically Structured Fe3O4 Nanoparticles for High-Performance Magnetorheological Fluids with Long-Term Stability. <i>ACS Applied Nano Materials</i> , 2020 , 3, 10931-10940	5.6	12
64	Controlled Molybdenum Disulfide Assembly inside Carbon Nanofiber by Boudouard Reaction Inspired Selective Carbon Oxidation. <i>Advanced Materials</i> , 2017 , 29, 1605327	24	11
63	Methylamine Treated Mn3O4 Nanoparticles as a Highly Efficient Water Oxidation Catalyst under Neutral Condition. <i>ChemCatChem</i> , 2019 , 11, 1665-1672	5.2	11
62	Biofunctionalized ceramic with self-assembled networks of nanochannels. ACS Nano, 2015, 9, 4447-57	16.7	11
61	Electrochemical Eselective Hydrocarboxylation of Styrene Using CO and Water. <i>Advanced Science</i> , 2020 , 7, 1900137	13.6	11

60	Redox-Active Tyrosine-Mediated Peptide Template for Large-Scale Single-Crystalline Two-Dimensional Silver Nanosheets. <i>ACS Nano</i> , 2020 , 14, 1738-1744	16.7	10
59	Chiral 432 Helicoid II Nanoparticle Synthesized with Glutathione and Poly(T)20 Nucleotide. <i>ChemNanoMat</i> , 2020 , 6, 362-367	3.5	10
58	Size-controllable and uniform gold bumpy nanocubes for single-particle-level surface-enhanced Raman scattering sensitivity. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 9044-9051	3.6	9
57	Anion Extraction-Induced Polymorph Control of Transition Metal Dichalcogenides. <i>Nano Letters</i> , 2019 , 19, 8644-8652	11.5	9
56	A Single Chiral Nanoparticle Induced Valley Polarization Enhancement. Small, 2020, 16, e2003005	11	9
55	Redox-neutral electrochemical conversion of CO2 to dimethyl carbonate. <i>Nature Energy</i> ,	62.3	9
54	High-Density Single-Layer Coating of Gold Nanoparticles onto Multiple Substrates by Using an Intrinsically Disordered Protein of ⊞ynuclein for Nanoapplications. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2017 , 9, 8519-8532	9.5	8
53	Hydrogen Production via Water Electrolysis: The Benefits of a Solar Cell-Powered Process. <i>IEEE Electrification Magazine</i> , 2018 , 6, 19-25	2.6	8
52	Metal Halide Perovskites for Solar Fuel Production and Photoreactions. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 8292-8301	6.4	8
51	A tyrosine-rich peptide induced flower-like palladium nanostructure and its catalytic activity. <i>RSC Advances</i> , 2015 , 5, 78026-78029	3.7	7
50	Spectroscopic capture of a low-spin Mn(IV)-oxo species in Ni-MnO nanoparticles during water oxidation catalysis. <i>Nature Communications</i> , 2020 , 11, 5230	17.4	7
49	Vitamin B12-Immobilized Graphene Oxide for Efficient Electrocatalytic Carbon Dioxide Reduction Reaction. <i>ChemSusChem</i> , 2020 , 13, 5620-5624	8.3	7
48	Demonstration of the nanosize effect of carbon nanomaterials on the dehydrogenation temperature of ammonia borane. <i>Nanoscale Advances</i> , 2019 , 1, 4697-4703	5.1	7
47	Tyrosyltyrosylcysteine-Directed Synthesis of Chiral Cobalt Oxide Nanoparticles and Peptide Conformation Analysis. <i>ACS Nano</i> , 2021 , 15, 979-988	16.7	7
46	Invited paper: Application of chitin and Chitosan toward electrochemical hybrid device. <i>Electronic Materials Letters</i> , 2011 , 7, 13-16	2.9	6
45	Recent advances in heterogeneous Mn-based electrocatalysts toward biological photosynthetic Mn4Ca cluster. <i>Catalysis Today</i> , 2020 , 353, 232-241	5.3	6
44	Effects of proton conduction on dielectric properties of peptides RSC Advances, 2018, 8, 34047-34055	3.7	6
43	Electrochemical Synthesis of Glycine from Oxalic Acid and Nitrate. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21943-21951	16.4	6

42	Increased electrical conductivity of peptides through annealing process. APL Materials, 2017, 5, 086109	5.7	5
41	Quantitative analysis of the coupling between proton and electron transport in peptide/manganese oxide hybrid films. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 7537-7545	3.6	5
40	Electrochemically Activated NiFeOxHy for Enhanced Oxygen Evolution. <i>ACS Applied Energy Materials</i> , 2021 , 4, 595-601	6.1	5
39	Reverse Electrodialysis-Assisted Solar Water Splitting. <i>Scientific Reports</i> , 2017 , 7, 12281	4.9	4
38	A scalable Al N i alloy powder catalyst prepared by metallurgical microstructure control. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11133-11140	13	4
37	Electrochemical Analysis of Carbon Nanosheet Catalyst on Silicon Photocathode for Hydrogen Generation. <i>Bulletin of the Korean Chemical Society</i> , 2018 , 39, 356-362	1.2	4
36	Tyrosine-Rich Peptide Insulator for Rapidly Dissolving Transient Electronics. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000516	6.8	4
35	An Implantable Ionic Wireless Power Transfer System Facilitating Electrosynthesis. <i>ACS Nano</i> , 2020 , 14, 11743-11752	16.7	4
34	Flexible Electronics: Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature (Adv. Healthcare Mater. 1/2016). <i>Advanced Healthcare Materials</i> , 2016 , 5, 2	10.1	4
33	Quantitative Analysis of Calcium Phosphate Nanocluster Growth Using Time-of-Flight Medium-Energy-Ion-Scattering Spectroscopy. <i>ACS Central Science</i> , 2018 , 4, 1253-1260	16.8	4
32	Second Harmonic Optical Circular Dichroism of Plasmonic Chiral Helicoid-III Nanoparticles <i>ACS Photonics</i> , 2022 , 9, 784-792	6.3	4
31	Screening of Pro-Asp Sequences Exposed on Bacteriophage M13 as an Ideal Anchor for Gold Nanocubes. <i>ACS Synthetic Biology</i> , 2017 , 6, 1635-1641	5.7	3
30	EGlutamylcysteine- and Cysteinylglycine-Directed Growth of Chiral Gold Nanoparticles and their Crystallographic Analysis. <i>Angewandte Chemie</i> , 2020 , 132, 13076-13083	3.6	3
29	Ultrasensitive Near-Infrared Circularly Polarized Light Detection Using 3D Perovskite Embedded with Chiral Plasmonic Nanoparticles <i>Advanced Science</i> , 2022 , e2104598	13.6	3
28	Controlling the size and circular dichroism of chiral gold helicoids. <i>Materials Advances</i> , 2021 , 2, 6988-699	95 .3	3
27	Synergistic Effects of Nonmagnetic Carbon Nanotubes on the Performance and Stability of Magnetorheological Fluids Containing Carbon Nanotube-CoFeNi Nanocomposite Particles. <i>Nano Letters</i> , 2021 , 21, 4973-4980	11.5	3
26	Fully Degradable Memristors and Humidity Sensors Based on a Tyrosine-Rich Peptide. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 3372-3378	4	3
25	Multidimensional Assembly of S-Layer Proteins on Mobility-Controlled Polyelectrolyte Multilayers. <i>ACS Macro Letters</i> , 2012 , 1, 1254-1257	6.6	2

24	Dimensionality reduction and unsupervised clustering for EELS-SI. <i>Ultramicroscopy</i> , 2021 , 231, 113314	3.1	2
23	Capturing Manganese Oxide Intermediates in Electrochemical Water Oxidation at Neutral pH by In Situ Raman Spectroscopy. <i>Angewandte Chemie</i> , 2021 , 133, 4723-4731	3.6	2
22	Effects of paramagnetic fluctuations on the thermochemistry of MnO(100) surfaces in the oxygen evolution reaction. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 859-865	3.6	2
21	Electrophoretic kinetics of concentrated TiO2 nanoparticle suspensions in aprotic solvent. <i>Electronic Materials Letters</i> , 2018 , 14, 79-82	2.9	2
20	Electrolysis of iron with oxygen gas evolution from molten sodium borate electrolytes. <i>Ironmaking and Steelmaking</i> ,1-8	1.3	2
19	DNA translocation through a nanopore in an ultrathin self-assembled peptide membrane. <i>Nanotechnology</i> , 2019 , 30, 195602	3.4	1
18	Probing the Structure and Binding Mode of EDTA on the Surface of MnO Nanoparticles for Water Oxidation by Advanced Electron Paramagnetic Resonance Spectroscopy. <i>Inorganic Chemistry</i> , 2020 , 59, 8846-8854	5.1	1
17	Electrochemical cell in the brain. <i>Nature Nanotechnology</i> , 2020 , 15, 625-626	28.7	1
16	Polydopaminellopper Hybrid Films as Source and Drain for Oxide Semiconductor Field-Effect Transistors. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800046	6.4	1
15	Titelbild: Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound (Angew. Chem. 32/2013). <i>Angewandte Chemie</i> , 2013 , 125, 8329-8329	3.6	1
14	Gold meets peptides in a hybrid coil. <i>Science</i> , 2021 , 371, 1311	33.3	1
13	In Situ Growth of CoMnPOxHy for Oxygen Evolution Reaction by Cobalt-Modified Commercial Manganese Phosphating and Electrochemical Activation. <i>ACS Applied Energy Materials</i> , 2021 , 4, 5392-53	36 ¹	1
12	Light polarization dependency existing in the biological photosystem and possible implications for artificial antenna systems. <i>Photosynthesis Research</i> , 2020 , 143, 205-220	3.7	1
11	Synaptic transistors based on a tyrosine-rich peptide for neuromorphic computing <i>RSC Advances</i> , 2021 , 11, 39619-39624	3.7	O
10	Complex Impedance Analysis on Charge Accumulation Step of MnO Nanoparticles during Water Oxidation. <i>ACS Omega</i> , 2021 , 6, 18404-18413	3.9	O
9	Electrochemical Synthesis of Glycine from Oxalic Acid and Nitrate. <i>Angewandte Chemie</i> , 2021 , 133, 2211	4 . 821	28
8	A Sn doped, strained CuAg film for electrochemical CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 7082-7089	13	O
7	Humidity-induced synaptic plasticity of ZnO artificial synapses using peptide insulator for neuromorphic computing. <i>Journal of Materials Science and Technology</i> , 2022 , 119, 150-155	9.1	О

LIST OF PUBLICATIONS

6	Valley Polarization: A Single Chiral Nanoparticle Induced Valley Polarization Enhancement (Small 37/2020). <i>Small</i> , 2020 , 16, 2070204	11
5	Hydrogen Production by Electrolysis and Photoelectrochemical System 2015 , 1-42	
4	Metal Nanocrystals: Chiral Surface and Geometry of Metal Nanocrystals (Adv. Mater. 41/2020). <i>Advanced Materials</i> , 2020 , 32, 2070308	24
3	Engineered Dissolution for Better Electrocatalysts. <i>CheM</i> , 2021 , 7, 20-22	16.2
2	Engineered Dissolution for Better Electrocatalysts. <i>CheM</i> , 2021 , 7, 20-22 Inorganic Hollow Nanocoils Fabricated by Controlled Interfacial Reaction and Their Electrocatalytic Properties. <i>Small</i> , 2021 , 17, e2103575	16.2