Benedicte Durand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6477308/publications.pdf

Version: 2024-02-01

30 papers 1,794 citations

331670 21 h-index 414414 32 g-index

34 all docs

34 docs citations

times ranked

34

2805 citing authors

#	Article	IF	CITATIONS
1	Interplay of RFX transcription factors 1, 2 and 3 in motile ciliogenesis. Nucleic Acids Research, 2020, 48, 9019-9036.	14.5	36
2	Role of DZIP1–CBY–FAM92 transition zone complex in the basal body to membrane attachment and ciliary budding. Biochemical Society Transactions, 2020, 48, 1067-1075.	3.4	6
3	<i>salto/CG13164</i> is required for sperm head morphogenesis in <i>Drosophila</i> . Molecular Biology of the Cell, 2019, 30, 636-645.	2.1	11
4	Altered GLI3 and FGF8 signaling underlies acrocallosal syndrome phenotypes in <i>Kif7</i> depleted mice. Human Molecular Genetics, 2019, 28, 877-887.	2.9	15
5	Dzip1 and Fam92 form a ciliary transition zone complex with cell type specific roles in Drosophila. ELife, 2019, 8, .	6.0	17
6	Genetic, structural, and chemical insights into the dual function of GRASP55 in germ cell Golgi remodeling and JAM-C polarized localization during spermatogenesis. PLoS Genetics, 2017, 13, e1006803.	3.5	28
7	Genetic specification of left–right asymmetry in the diaphragm muscles and their motor innervation. ELife, 2017, 6, .	6.0	6
8	Drosophila melanogaster as a model for basal body research. Cilia, 2016, 5, 22.	1.8	55
9	Transition zone assembly and its contribution to axoneme formation in <i>Drosophila</i> male germ cells. Journal of Cell Biology, 2016, 214, 875-889.	5.2	67
10	RFX2 Is a Major Transcriptional Regulator of Spermiogenesis. PLoS Genetics, 2015, 11, e1005368.	3.5	55
11	Imaging cilia in Drosophila melanogaster. Methods in Cell Biology, 2015, 127, 279-302.	1.1	16
12	The ciliogenic transcription factor Rfx3 is required for the formation of the thalamocortical tract by regulating the patterning of prethalamus and ventral telencephalon. Human Molecular Genetics, 2015, 24, 2578-2593.	2.9	24
13	The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor. Human Molecular Genetics, 2015, 24, 4997-5014.	2.9	37
14	The more we know, the more we have to discover: an exciting future for understanding cilia and ciliopathies. Cilia, 2015, 4, 5.	1.8	8
15	RFX transcription factors are essential for hearing in mice. Nature Communications, 2015, 6, 8549.	12.8	142
16	HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus. PLoS Genetics, 2014, 10, e1004577.	3.5	67
17	<i>hemingway</i> is required for sperm flagella assembly and ciliary motility in <i>Drosophila</i> Molecular Biology of the Cell, 2014, 25, 1276-1286.	2.1	20
18	The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals. Human Molecular Genetics, 2014, 23, 563-577.	2.9	45

#	Article	IF	CITATIONS
19	The Ciliogenic Transcription Factor RFX3 Regulates Early Midline Distribution of Guidepost Neurons Required for Corpus Callosum Development. PLoS Genetics, 2012, 8, e1002606.	3.5	70
20	<i>Drosophila chibby</i> is required for basal body formation and ciliogenesis but not for Wg signaling. Journal of Cell Biology, 2012, 197, 313-325.	5. 2	65
21	Two rotating cilia in the node cavity are sufficient to break left–right symmetry in the mouse embryo. Nature Communications, 2012, 3, 622.	12.8	127
22	The Transcription Factor Rfx3 Regulates \hat{I}^2 -Cell Differentiation, Function, and Glucokinase Expression. Diabetes, 2010, 59, 1674-1685.	0.6	63
23	Transcriptional control of genes involved in ciliogenesis: a first step in making cilia. Biology of the Cell, 2010, 102, 499-513.	2.0	133
24	RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. Journal of Cell Science, 2009, 122, 3180-3189.	2.0	107
25	Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species. Genome Biology, 2007, 8, R195.	9.6	97
26	Novel Function of the Ciliogenic Transcription Factor RFX3 in Development of the Endocrine Pancreas. Diabetes, 2007, 56, 950-959.	0.6	85
27	DrosophilaRegulatory factor X is necessary for ciliated sensory neuron differentiation. Development (Cambridge), 2002, 129, 5487-5498.	2.5	142
28	Drosophila regulatory factor X is an embryonic type I sensory neuron marker also expressed in spermatids and in the brain of Drosophila. Mechanisms of Development, 2001, 103, 159-162.	1.7	28
29	Cloning and characterization of dRFX, the Drosophila member of the RFX family of transcription factors. Gene, 2000, 246, 285-293.	2.2	30
30	RFX Proteins, a Novel Family of DNA Binding Proteins Conserved in the Eukaryotic Kingdom. Nucleic Acids Research, 1996, 24, 803-807.	14.5	189