Emile J L Chappin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6477014/publications.pdf

Version: 2024-02-01

56 1,531 24 38
papers citations h-index g-index

56 56 56 1618 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Prospects of modelling societal transitions: Position paper of an emerging community. Environmental Innovation and Societal Transitions, 2015, 17, 41-58.	2.5	155
2	Adoption of energy efficient technologies by households – Barriers, policies and agent-based modelling studies. Renewable and Sustainable Energy Reviews, 2019, 99, 29-41.	8.2	120
3	On the impact of CO2 emission-trading on power generation emissions. Technological Forecasting and Social Change, 2009, 76, 358-370.	6.2	90
4	Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action. Jasss, 2020, 23, .	1.0	89
5	Transition and transformation: A bibliometric analysis of two scientific networks researching socio-technical change. Renewable and Sustainable Energy Reviews, 2014, 30, 715-723.	8.2	87
6	Modelling decisions on energy-efficient renovations: A review. Renewable and Sustainable Energy Reviews, 2014, 39, 196-208.	8.2	86
7	Modelling Sustainability Transitions: An Assessment of Approaches and Challenges. Jasss, 2018, 21, .	1.0	69
8	Cross-border electricity market effects due to price caps in an emission trading system: An agent-based approach. Energy Policy, 2014, 71, 139-158.	4.2	55
9	Simulating climate and energy policy with agent-based modelling: The Energy Modelling Laboratory (EMLab). Environmental Modelling and Software, 2017, 96, 421-431.	1.9	53
10	The market (in-)stability reserve for EU carbon emission trading: WhyÂit might fail and how to improve it. Utilities Policy, 2015, 35, 1-18.	2.1	51
11	Adaptation of interconnected infrastructures to climate change: AÂsocio-technical systems perspective. Utilities Policy, 2014, 31, 10-17.	2.1	47
12	Teaching sustainability to a broad audience through an entertainment game – The effect of Catan: Oil Springs. Journal of Cleaner Production, 2017, 156, 556-568.	4.6	45
13	Cross-border effects of capacity mechanisms in interconnected power systems. Utilities Policy, 2017, 46, 33-47.	2.1	38
14	The effectiveness of a strategic reserve in the presence of a high portfolio share of renewable energy sources. Utilities Policy, 2016, 39, 13-28.	2.1	36
15	Agent-based modelling of energy infrastructure transitions. International Journal of Critical Infrastructures, 2010, 6, 106.	0.1	35
16	Adjusting the CO 2 cap to subsidised RES generation: Can CO 2 prices be decoupled from renewable policy?. Applied Energy, 2015, 156, 693-702.	5.1	35
17	The effectiveness of capacity markets in the presence of a high portfolio share of renewable energy sources. Utilities Policy, 2017, 48, 76-91.	2.1	35
18	An agent-based model of transitions in consumer lighting: Policy impacts from the E.U. phase-out of incandescents. Environmental Innovation and Societal Transitions, 2013, 7, 16-36.	2.5	34

#	Article	IF	CITATIONS
19	Why fully liberalised electricity markets will fail to meet deep decarbonisation targets even with strong carbon pricing. Energy Policy, 2019, 131, 99-110.	4.2	32
20	An analysis of a forward capacity market with long-term contracts. Energy Policy, 2017, 111, 255-267.	4.2	30
21	Rethinking European energy taxation to incentivise consumer demand response participation. Energy Policy, 2019, 124, 156-168.	4.2	30
22	Agent-based assessment framework for behavior-changing feedback devices: Spreading of devices and heating behavior. Technological Forecasting and Social Change, 2015, 98, 105-119.	6.2	29
23	Energy-efficiency impacts of an air-quality feedback device in residential buildings: An agent-based modeling assessment. Energy and Buildings, 2016, 116, 151-163.	3.1	27
24	Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis. Energies, 2018, 11, 2319.	1.6	26
25	Climate adaptation of interconnected infrastructures: a framework for supporting governance. Regional Environmental Change, 2014, 14, 919.	1.4	24
26	Multi-model ecologies for shaping future energy systems: Design patterns and development paths. Renewable and Sustainable Energy Reviews, 2018, 82, 3441-3451.	8.2	19
27	The Emergence of Climate Change Mitigation Action by Society: An Agent-Based Scenario Discovery Study. Jasss, 2016, 19, .	1.0	18
28	An ex ante assessment of value conflicts and social acceptance of sustainable heating systems. Energy Policy, 2021, 153, 112265.	4.2	12
29	Exploring Homeowners' Insulation Activity. Jasss, 2016, 19, .	1.0	12
30	Automating agent-based modeling: Data-driven generation and application of innovation diffusion models. Environmental Modelling and Software, 2017, 92, 261-268.	1.9	10
31	A comprehensive approach to reviewing latent topics addressed by literature across multiple disciplines. Applied Energy, 2018, 228, 2111-2128.	5.1	10
32	Tracing Long-term Value Change in (Energy) Technologies: Opportunities of Probabilistic Topic Models Using Large Data Sets. Science Technology and Human Values, 2022, 47, 429-458.	1.7	10
33	An Agent Based Model of the System of Electricity Production Systems: Exploring the Impact of CO2 Emission-Trading. , 2007, , .		9
34	Agent-based modeling of energy infrastructure transitions. , 2008, , .		9
35	Integrating agent-based modeling, serious gaming, and co-design for planning transport infrastructure and public spaces. Urban Design International, 2021, 26, 67-81.	1.3	9
36	Reducing domestic heating demand: Managing the impact of behavior-changing feedback devices via marketing. Journal of Environmental Management, 2017, 197, 642-655.	3.8	8

#	Article	IF	Citations
37	A power game: simulating the long-term development of an electricity market in a competitive game. , 2009, , .		6
38	On the design of system transitions Is Transition Management in the energy domain feasible?. , 2008, , .		5
39	A method for designing minimumâ€cost multisource multisink network layouts. Systems Engineering, 2020, 23, 14-35.	1.6	5
40	Agent-based modelling of the social dynamics of energy end use. , 2020, , 321-351.		5
41	Carbon Policies. , 2010, , 31-56.		5
42	Infrastructure Network Design with a Multi-Model Approach: Comparing Geometric Graph Theory with an Agent-Based Implementation of an Ant Colony Optimization. Jasss, 2014, 17, .	1.0	5
43	Phasing out support schemes for renewables in neighbouring countries: An agent-based model with investment preferences. Applied Energy, 2022, 305, 117959.	5.1	4
44	On the development of Agent-Based Models for infrastructure evolution. , 2008, , .		2
45	New Methods for Analysis of Systems-of-Systems and Policy: The Power of Systems Theory, Crowd Sourcing and Data Management., 2012, , .		2
46	The Car as Power Plant: Towards socio-technical systems integration. , 2015, , .		2
47	Are We Satisfying the Right Conditions for the Mobility Transition? A Review and Evaluation of the Dutch Urban Mobility Policies. Sustainability, 2021, 13, 12736.	1.6	2
48	Using Agent-Based Models to Generate Transformation Knowledge for the German Energiewende—Potentials and Challenges Derived from Four Case Studies. Energies, 2020, 13, 6133.	1.6	1
49	EMLab-Consumerâ€"Simulating Energy Efficiency Adoption Decisions of European Households. Springer Proceedings in Complexity, 2021, , 485-492.	0.2	1
50	Modeling for Transition Management. SSRN Electronic Journal, 0, , .	0.4	1
51	Assessing the Residential Energy Rebound Effect by Means of a Serious Game. Lecture Notes in Computer Science, 2018, , 129-138.	1.0	1
52	Transition of energy infrastructure systems: Towards a framework for assessing the system transition process., 2008,,.		0
53	Model based decision support for creation and operation of sustainable infrastructure. , 2009, , .		0
54	Archetypical Patterns in Agent-Based Models. Springer Proceedings in Complexity, 2021, , 313-332.	0.2	0

#	Article	IF	CITATIONS
55	Does Distributive Justice Improve Welfare Outcomes in Climate Adaptation? An Exploration Using an Agent-Based Model of a Stylized Social–Environmental System. Sustainability, 2021, 13, 12648.	1.6	O
56	Linking of a multi-country discrete choice experiment and an agent-based model to simulate the diffusion of smart thermostats. Technological Forecasting and Social Change, 2022, 180, 121682.	6.2	0