Emidio Camaioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6476859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circular Hazelnut Protection by Lignocellulosic Waste Valorization for Nanopesticides Development. Applied Sciences (Switzerland), 2022, 12, 2604.	2.5	9
2	Critical Assessment of a Structure-Based Screening Campaign for IDO1 Inhibitors: Tips and Pitfalls. International Journal of Molecular Sciences, 2022, 23, 3981.	4.1	6
3	A Green Nanostructured Pesticide to Control Tomato Bacterial Speck Disease. Nanomaterials, 2021, 11, 1852.	4.1	15
4	One Key and Multiple Locks: Substrate Binding in Structures of Tryptophan Dioxygenases and Hydroxylases. ChemMedChem, 2021, 16, 2732-2743.	3.2	3
5	Adenosine deaminase – A target for new piperazine derivatives. Biophysical Chemistry, 2021, 277, 106658.	2.8	0
6	Recent advances in urea- and thiourea-containing compounds: focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Medicinal Chemistry, 2021, 12, 1046-1064.	3.9	78
7	Computational studies in enantioselective liquid chromatography: Forty years of evolution in docking- and molecular dynamics-based simulations. TrAC - Trends in Analytical Chemistry, 2020, 122, 115703.	11.4	28
8	Dexpramipexole blocks Nav1.8 sodium channels and provides analgesia in multiple nociceptive and neuropathic pain models. Pain, 2020, 161, 831-841.	4.2	22
9	Fragment based drug design and diversity-oriented synthesis of carboxylic acid isosteres. Bioorganic and Medicinal Chemistry, 2020, 28, 115731.	3.0	7
10	New Insights from Crystallographic Data: Diversity of Structural Motifs and Molecular Recognition Properties between Groups of IDO1 Structures. ChemMedChem, 2020, 15, 891-899.	3.2	11
11	Enantioselective HPLC Analysis to Assist the Chemical Exploration of Chiral Imidazolines. Molecules, 2020, 25, 640.	3.8	8
12	The Relationships between Somatic Cells and Isoleucine, Leucine and Tyrosine Content in Cow Milk. Applied Sciences (Switzerland), 2019, 9, 349.	2.5	6
13	The Relationship between S. aureus and Branched-Chain Amino Acids Content in Composite Cow Milk. Animals, 2019, 9, 981.	2.3	13
14	Identification of the Nicotinamide Salvage Pathway as a New Toxification Route for Antimetabolites. Cell Chemical Biology, 2018, 25, 471-482.e7.	5.2	55
15	Dexpramipexole improves bioenergetics and outcome in experimental stroke. British Journal of Pharmacology, 2018, 175, 272-283.	5.4	21
16	Chiral separation of helical chromenes with chloromethyl phenylcarbamate polysaccharideâ€based stationary phases. Journal of Separation Science, 2018, 41, 1266-1273.	2.5	15
17	BF3·Et2O-Promoted Decomposition of Cyclic α-Diazo-β-Hydroxy Ketones: Novel Insights into Mechanistic Aspects. Catalysts, 2018, 8, 600.	3.5	3
18	Hydrophobic Amino Acid Content in Onions as Potential Fingerprints of Geographical Origin: The Case of Rossa da Inverno sel. Rojo Duro. Molecules, 2018, 23, 1259.	3.8	10

#	Article	IF	CITATIONS
19	N -Decyl- S -trityl-(R)-cysteine, a new chiral selector for "green―ligand-exchange chromatography applications. Journal of Pharmaceutical and Biomedical Analysis, 2017, 144, 31-40.	2.8	12
20	Advances in indoleamine 2,3-dioxygenase 1 medicinal chemistry. MedChemComm, 2017, 8, 1378-1392.	3.4	33
21	Targeting Wnt-driven cancers: Discovery of novel tankyrase inhibitors. European Journal of Medicinal Chemistry, 2017, 142, 506-522.	5.5	47
22	Branched-chain Amino Acids as Potential Diagnostic and Prognostic Disease Biomarkers. International Journal of Clinical Research & Trials, 2017, 2, .	1.6	5
23	Concepts and Molecular Aspects in the Polypharmacology of PARPâ€1 Inhibitors. ChemMedChem, 2016, 11, 1219-1226.	3.2	27
24	The Janus-faced nature of IDO1 in infectious diseases: challenges and therapeutic opportunities. Future Medicinal Chemistry, 2016, 8, 39-54.	2.3	13
25	- Mechanistic Aspects of Chiral Recognition on Protein-Based Stationary Phases. , 2016, 49, 46-79.		2
26	Investigating the allosteric reverse signalling of PARP inhibitors with microsecond molecular dynamic simulations and fluorescence anisotropy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1765-1772.	2.3	15
27	Design, Synthesis, Crystallographic Studies, and Preliminary Biological Appraisal of New Substituted Triazolo[4,3- <i>b</i>]pyridazin-8-amine Derivatives as Tankyrase Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 2807-2812.	6.4	31
28	Scaffold hopping approach on the route to selective tankyrase inhibitors. European Journal of Medicinal Chemistry, 2014, 87, 611-623.	5.5	20
29	Evaluation of (arene)Ru(II) complexes of curcumin as inhibitors ofÂdipeptidyl peptidase IV. Biochimie, 2014, 99, 146-152.	2.6	30
30	<scp>PARP</scp> inhibitors: polypharmacology versus selective inhibition. FEBS Journal, 2013, 280, 3563-3575.	4.7	70
31	Exploring the effect of PARP-1 flexibility in docking studies. Journal of Molecular Graphics and Modelling, 2013, 45, 192-201.	2.4	16
32	From Polypharmacology to Target Specificity: The Case of PARP Inhibitors. Current Topics in Medicinal Chemistry, 2013, 13, 2939-2954.	2.1	32
33	Characterization of Thymoquinone Binding to Human α1-Acid Glycoprotein. Journal of Pharmaceutical Sciences, 2012, 101, 2564-2573.	3.3	26
34	Longâ€lasting neuroprotection and neurological improvement in stroke models with new, potent and brain permeable inhibitors of poly(ADPâ€ribose) polymerase. British Journal of Pharmacology, 2012, 165, 1487-1500.	5.4	48
35	Discovery and characterization of novel potent PARP-1 inhibitors endowed with neuroprotective properties: From TIQ-A to HYDAMTIQ. MedChemComm, 2011, 2, 559.	3.4	17
36	Fast chromatographic determination of the bile salt critical micellar concentration. Analytical and Bioanalytical Chemistry, 2011, 401, 267-274.	3.7	13

#	Article	IF	CITATIONS
37	Chiral ligand-exchange separation and resolution of extremely rigid glutamate analogs: 1-aminospiro[2.2]pentyl-1,4-dicarboxylic acids. Analytical and Bioanalytical Chemistry, 2010, 397, 1997-2011.	3.7	12
38	Thymoquinone, a potential therapeutic agent of Nigella sativa, binds to site I of human serum albumin. Phytomedicine, 2010, 17, 714-720.	5.3	52
39	Pharmacological Inhibition of Poly(ADP-ribose) Polymerase (PARP) Activity in PARP-1 Silenced Tumour Cells Increases Chemosensitivity to Temozolomide and to a N3-Adenine Selective Methylating Agent. Current Cancer Drug Targets, 2010, 10, 368-383.	1.6	18
40	Poly(ADP-ribose) Catabolism Triggers AMP-dependent Mitochondrial Energy Failure. Journal of Biological Chemistry, 2009, 284, 17668-17676.	3.4	80
41	Highlights at the gate of tryptophan catabolism: a review on the mechanisms of activation and regulation of indoleamine 2,3-dioxygenase (IDO), a novel target in cancer disease. Amino Acids, 2009, 37, 219-229.	2.7	114
42	Derived chromatographic indices as effective tools to study the self-aggregation process of bile acids. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 613-621.	2.8	23
43	Selective PARPâ€2 inhibitors increase apoptosis in hippocampal slices but protect cortical cells in models of postâ€ischaemic brain damage. British Journal of Pharmacology, 2009, 157, 854-862.	5.4	44
44	On the Way to Selective PARPâ $\in 2$ Inhibitors. Design, Synthesis, and Preliminary Evaluation of a Series of Isoquinolinone Derivatives. ChemMedChem, 2008, 3, 914-923.	3.2	58
45	Molecular docking and spatial coarse graining simulations as tools to investigate substrate recognition, enhancer binding and conformational transitions in indoleamine-2,3-dioxygenase (IDO). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1058-1068.	2.3	31
46	Correlation between CMC and chromatographic index: simple and effective evaluation of the hydrophobic/hydrophilic balance of bile acids. Analytical and Bioanalytical Chemistry, 2007, 388, 1681-1688.	3.7	28
47	Dominant Factors Affecting the Chromatographic Behaviour of Bile Acids. Chromatographia, 2006, 64, 343-349.	1.3	6
48	3α-6α-Dihydroxy-7α-fluoro-5β-cholanoate (UPF-680), physicochemical and physiological properties of a new fluorinated bile acid that prevents 17α-ethynyl-estradiol-induced cholestasis in rats. Toxicology and Applied Pharmacology, 2006, 214, 199-208.	2.8	6
49	Stereoselective synthesis and preliminary evaluation of (+)- and (–)-3-methyl-5-carboxy-thien-2-yl-glycine (3-MATIDA): identification of (+)-3-MATIDA as a novel mGluR1 competitive antagonist. Il Farmaco, 2004, 59, 93-99.	0.9	15
50	Towards New Neuroprotective Agents: Design and Synthesis of 4H-Thieno[2,3-c]isoquinolin-5-one Derivatives as Potent PARP-1 Inhibitors ChemInform, 2004, 35, no.	0.0	1
51	Bile Acid Derivatives as Ligands of the Farnesoid X Receptor. Synthesis, Evaluation, and Structureâ^'Activity Relationship of a Series of Body and Side Chain Modified Analogues of Chenodeoxycholic Acid. Journal of Medicinal Chemistry, 2004, 47, 4559-4569.	6.4	166
52	Life or Death Decisions: The Case of Poly(ADP-Ribose)Polymerase (PARP) as a Therapeutic Target for Brain Ischaemia. Progress in Medicinal Chemistry, 2004, 42, 125-169.	10.4	9
53	Towards new neuroprotective agents: design and synthesis of 4H-thieno[2,3-c] isoquinolin-5-one derivatives as potent PARP-1 inhibitors. Il Farmaco, 2003, 58, 851-858.	0.9	23
54	Heterocycles as Companions on Route to Drug Discovery. ChemInform, 2003, 34, no.	0.0	0

Emidio Camaioni

#	Article	IF	CITATIONS
55	Rat brain guanosine binding site. Bioorganic and Medicinal Chemistry, 2003, 11, 5417-5425.	3.0	61
56	Binding mode of 6ECDCA, a potent bile acid agonist of the farnesoid X receptor (FXR). Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1865-1868.	2.2	23
57	Novel Isoquinolinone-Derived Inhibitors of Poly(ADP-ribose) Polymerase-1: Pharmacological Characterization and Neuroprotective Effects in an in Vitro Model of Cerebral Ischemia. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 943-949.	2.5	65
58	6α-Ethyl-Chenodeoxycholic Acid (6-ECDCA), a Potent and Selective FXR Agonist Endowed with Anticholestatic Activity. Journal of Medicinal Chemistry, 2002, 45, 3569-3572.	6.4	677
59	Spiro[2.2]pentane as a Dissymmetric Scaffold for Conformationally Constrained Analogues of Glutamic Acid:Â Focus on Racemic 1-Aminospiro[2.2]pentyl-1,4-dicarboxylic Acids. Journal of Organic Chemistry, 2002, 67, 5497-5507.	3.2	35
60	Modeling of Poly(ADP-ribose)polymerase (PARP) Inhibitors. Docking of Ligands and Quantitative Structureâ [^] Activity Relationship Analysis. Journal of Medicinal Chemistry, 2001, 44, 3786-3794.	6.4	93
61	Use of RP-HPLC on a dynamically coated artificial membrane to predict intestinal absorption of bile acids. Chromatographia, 2001, 53, S453-S455.	1.3	2
62	Synthesis and biological evaluation of 2-(3′-(1 H -tetrazol-5-yl)bicyclo[1.1.1]pent-1-yl)glycine (S -TBPG), a novel mGlu1 receptor antagonist. Bioorganic and Medicinal Chemistry, 2001, 9, 221-227.	3.0	81
63	Adenosine deaminase: Functional implications and different classes of inhibitors. Medicinal Research Reviews, 2001, 21, 105-128.	10.5	277
64	Metabotropic glutamate receptors: structure and new subtype-selective ligands. Il Farmaco, 2001, 56, 91-94.	0.9	11
65	Effect of new pyridoxal phosphate arylazo derivatives on the ecto-ATPase activity in guinea pig tissues. Pharmaceutical Chemistry Journal, 2000, 34, 226-228.	0.8	1
66	Synthesis and Receptor Affinity of Polysubstituted Adenosines. Nucleosides & Nucleotides, 1999, 18, 739-740.	0.5	5
67	2-Substituted N -ethylcarboxamidoadenosine derivatives as high-affinity agonists at human A 3 adenosine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 360, 103-108.	3.0	48
68	Structure-Activity Relationships of Adenosine Deaminase Inhibitors. Nucleosides & Nucleotides, 1999, 18, 741-742.	0.5	3
69	Coupling of 2,6-Dichloropurine and 2,6-Dichlorodeazapurines with Ribose and Ribose Modified Sugars. Nucleosides & Nucleotides, 1999, 18, 587-590.	0.5	3
70	Synthesis of Di- And Tri-Substituted Adenosine Derivatives and Their Affinities at Human Adenosine Receptor Subtypes. Nucleosides & Nucleotides, 1999, 18, 2511-2520.	0.5	14
71	Structureâ~ Activity Relationships of Bisphosphate Nucleotide Derivatives as P2Y1Receptor Antagonists and Partial Agonists. Journal of Medicinal Chemistry, 1999, 42, 1625-1638.	6.4	60
72	Chapter 10 Molecular recognition in P2 receptors: Ligand development aided by molecular modeling and mutagenesis. Progress in Brain Research, 1999, 120, 119-132.	1.4	24

#	Article	IF	CITATIONS
73	Competitive and selective antagonism of P2Y ₁ receptors by <i>N</i> ⁶ â€methyl 2′â€deoxyadenosine 3′,5′â€bisphosphate. British Journal of Pharmacology, 1998, 124, 1-3.	5.4	188
74	New substituted 9-alkylpurines as adenosine receptor ligands. Bioorganic and Medicinal Chemistry, 1998, 6, 523-533.	3.0	82
75	Synthesis of New Nucleosides by coupling of chloropurines with 2- and 3-deoxy derivatives of New Nucleosides. Helvetica Chimica Acta, 1998, 81, 145-152.	1.6	14
76	Synthesis of New 3′-Deoxyribonucleosides Employing the Acid-Catalyzed Fusion Method. Helvetica Chimica Acta, 1998, 81, 2326-2331.	1.6	11
77	Synthesis and structure-activity relationships of pyridoxal-6-arylazo-5?-phosphate and phosphonate derivatives as P2 receptor antagonists. , 1998, 45, 52-66.		35
78	Characterization of potent ligands at human recombinant adenosine receptors. Drug Development Research, 1998, 45, 176-181.	2.9	34
79	Some 6-phenylazopyridoxalphosphate derivatives influence P2-purinoreceptor-mediated effects. Pharmaceutical Chemistry Journal, 1998, 32, 399-401.	0.8	1
80	Modulation of apoptosis in human lymphocytes by adenosine analogues. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2533-2538.	2.2	1
81	Deoxyadenosine Bisphosphate Derivatives as Potent Antagonists at P2Y1Receptors. Journal of Medicinal Chemistry, 1998, 41, 183-190.	6.4	133
82	Human P2Y1Receptor:Â Molecular Modeling and Site-Directed Mutagenesis as Tools To Identify Agonist and Antagonist Recognition Sites. Journal of Medicinal Chemistry, 1998, 41, 1456-1466.	6.4	153
83	Potent and Selective Ligands for Adenosine Binding Sites. Nucleosides & Nucleotides, 1997, 16, 1379-1388.	0.5	6
84	Adenosine receptor agonists: Synthesis and biological evaluation of the diastereoisomers of 2-(3-hydroxy-3-phenyl-1-propyn-1-yl)NECA. Bioorganic and Medicinal Chemistry, 1997, 5, 2267-2275.	3.0	27
85	Adenosine deaminase inhibitors: synthesis, diastereoisomeric resolution and biological activity of 1-(2-hydroxy-3-nonyl)-1,2,4-triazole-3-carboxamide. Il Farmaco, 1997, 52, 429-33.	0.9	6
86	2-Alkenyl and 2-Alkyl Derivatives of Adenosine and Adenosine-5â€~-N-Ethyluronamide: Different Affinity and Selectivity ofE- andZ-Diastereomers at A2AAdenosine Receptors. Journal of Medicinal Chemistry, 1996, 39, 4211-4217.	6.4	28
87	Chemical and pharmacological profile of selective adenosine receptor agonists. Pharmacochemistry Library, 1996, 24, 165-180.	0.1	0
88	Diazepinone Nucleosides as Inhibitors of Cytidine Deaminase Nucleosides & Nucleotides, 1996, 15, 1567-1580.	0.5	8
89	Synthesis and biological activity of 3'-deoxy derivative of adenosine (5'-N-methylcarboxamide) (MECA). Collection of Czechoslovak Chemical Communications, 1996, 61, 33-37.	1.0	4
90	Unexpected synthesis of acyclic adenine nucleosides. Collection of Czechoslovak Chemical Communications, 1996, 61, 154-155.	1.0	1

#	Article	IF	CITATIONS
91	Inhibitory Effects of 1-Deazaadenosine Analogues on HIV Replication and Adenosine Deaminase. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 603-606.	1.1	7
92	Synthesis and Biological Evaluation of N6-Cycloalkyl Derivatives of 1-Deazaadenine Nucleosides: A New Class of Anti-Human Immunodeficiency Virus Agents. Journal of Medicinal Chemistry, 1995, 38, 4019-4025.	6.4	43
93	Platelet Aggregation Inhibitory Activity of Selective A2 Adenosine Receptor Agonists. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 449-453.	1.1	1
94	2-Aralkynyl and 2-Heteroalkynyl Derivatives of Adenosine-5'-N-Ethyluronamide as Selective A2a Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 1995, 38, 1462-1472.	6.4	62
95	Selective A2 Adenosine Receptor Agonists with Potent Inhibitory Activity on Platelet Aggregation. , 1995, , 141-148.		0
96	Synthesis of 2′-Deoxyribonucleoside Derivatives of 1-Deazapurine. Nucleosides & Nucleotides, 1994, 13, 835-848.	0.5	6
97	2-Alkynyl Derivatives of Adenosine-5'-N-ethyluronamide: Selective A2 Adenosine Receptor Agonists with Potent Inhibitory Activity on Platelet Aggregation. Journal of Medicinal Chemistry, 1994, 37, 1720-1726.	6.4	67
98	Adenosine deaminase inhibitors: synthesis and structure-activity relationships of 2-hydroxy-3-nonyl derivatives of azoles. Journal of Medicinal Chemistry, 1994, 37, 201-205.	6.4	32
99	Pharmacology of the highly selective A1 adenosine receptor agonist 2-chloro-N6-cyclopentyladenosine. Arzneimittelforschung, 1994, 44, 1305-12.	0.4	14
100	Adenosine deaminase inhibitors: Structure-activity relationships in 1-deazaadenosine and erythro-9-(2-hydroxy-3-nonyl)adenine analogues. Drug Development Research, 1993, 28, 253-258.	2.9	28
101	26 1-Deazapurine derivatives: A new class of antiviral compounds. Antiviral Research, 1993, 20, 54.	4.1	0
102	Synthesis of 1, 7-Dideazapurine Ribonucleosides and Deoxyribonucleosides. Nucleosides & Nucleotides, 1993. 12. 39-53.	0.5	7