
Jens Rittscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6476729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FANet: A Feedback Attention Network for Improved Biomedical Image Segmentation. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 9375-9388.	7.2	67
2	Automated quality assessment of large digitised histology cohorts by artificial intelligence. Scientific Reports, 2022, 12, 5002.	1.6	19
3	Additive Angular Margin Loss and Model Scaling Network for Optimised Colitis Scoring. , 2022, , .		2
4	Digital pathology and artificial intelligence will be key to supporting clinical and academic cellular pathology through COVID-19 and future crises: the PathLAKE consortium perspective. Journal of Clinical Pathology, 2021, 74, 443-447.	1.0	49
5	Role of digital pathology in diagnostic histopathology in the response to COVID-19: results from a survey of experience in a UK tertiary referral hospital. Journal of Clinical Pathology, 2021, 74, 129-132.	1.0	34
6	Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning. Gut, 2021, 70, 544-554.	6.1	148
7	A deep learning framework for quality assessment and restoration in video endoscopy. Medical Image Analysis, 2021, 68, 101900.	7.0	41
8	EndoUDA: A Modality Independent Segmentation Approach for Endoscopy Imaging. Lecture Notes in Computer Science, 2021, , 303-312.	1.0	4
9	The Potential of Artificial Intelligence to Detect Lymphovascular Invasion in Testicular Cancer. Cancers, 2021, 13, 1325.	1.7	17
10	Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy. Medical Image Analysis, 2021, 70, 102002.	7.0	67
11	Artificial intelligence for advance requesting of immunohistochemistry in diagnostically uncertain prostate biopsies. Modern Pathology, 2021, 34, 1780-1794.	2.9	16
12	Tumour irradiation combined with vascular-targeted photodynamic therapy enhances antitumour effects in pre-clinical prostate cancer. British Journal of Cancer, 2021, 125, 534-546.	2.9	8
13	Transcriptome and genome evolution during HER2-amplified breast neoplasia. Breast Cancer Research, 2021, 23, 73.	2.2	2
14	TRAIT2D: a Software for Quantitative Analysis of Single Particle Diffusion Data. F1000Research, 2021, 10, 838.	0.8	5
15	A Pilot Study on Automatic Three-Dimensional Quantification of Barrett's Esophagus for Risk Stratification and Therapy Monitoring. Gastroenterology, 2021, 161, 865-878.e8.	0.6	21
16	Early Detection of Liver Fibrosis Using Graph Convolutional Networks. Lecture Notes in Computer Science, 2021, , 217-226.	1.0	3
17	Digital Pathology Transformation in a Supraregional Germ Cell Tumour Network. Diagnostics, 2021, 11, 2191.	1.3	8

Learning Cellular Phenotypes through Supervision. , 2021, 2021, 3592-3595.

3

Jens Rittscher

#	Article	IF	CITATIONS
19	Artificial intelligence for colonoscopic polyp detection: High performance versus human nature. Journal of Gastroenterology and Hepatology (Australia), 2020, 35, 1663-1664.	1.4	2
20	DeepScratch: Single-cell based topological metrics of scratch wound assays. Computational and Structural Biotechnology Journal, 2020, 18, 2501-2509.	1.9	8
21	Artificial intelligence–based morphological fingerprinting of megakaryocytes: a new tool for assessing disease in MPN patients. Blood Advances, 2020, 4, 3284-3294.	2.5	51
22	Single-Molecule Localization Microscopy Reconstruction Using Noise2Noise for Super-Resolution Imaging of Actin Filaments. , 2020, , .		3
23	MI-UNet: Improved Segmentation in Ureteroscopy. , 2020, , .		4
24	<scp>KCML</scp> : a machineâ€learning framework for inference of multiâ€scale gene functions from genetic perturbation screens. Molecular Systems Biology, 2020, 16, e9083.	3.2	11
25	An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy. Scientific Reports, 2020, 10, 2748.	1.6	41
26	Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning. Acta Ophthalmologica, 2020, 98, e715-e721.	0.6	24
27	Detailed Molecular and Immune Marker Profiling of Archival Prostate Cancer Samples Reveals an Inverse Association between TMPRSS2:ERG Fusion Status and Immune Cell Infiltration. Journal of Molecular Diagnostics, 2020, 22, 652-669.	1.2	6
28	Implementation of digital pathology into diagnostic practice: perceptions and opinions of histopathology trainees and implications for training. Journal of Clinical Pathology, 2020, 73, 223-227.	1.0	14
29	Visualization of T Cell Migration in the Spleen Reveals a Network of Perivascular Pathways that Guide Entry into T Zones. Immunity, 2020, 52, 794-807.e7.	6.6	37
30	DeepSplit: Segmentation of Microscopy Images Using Multi-task Convolutional Networks. Communications in Computer and Information Science, 2020, , 155-167.	0.4	3
31	Improving Pathological Distribution Measurements with Bayesian Uncertainty. Lecture Notes in Computer Science, 2020, , 61-70.	1.0	1
32	Capturing variations in nuclear phenotypes. Journal of Computational Science, 2019, 36, 101014.	1.5	0
33	Ink Removal from Histopathology Whole Slide Images by Combining Classification, Detection and Image Generation Models. , 2019, , .		9
34	Towards the Identification of Histology Based Subtypes in Prostate Cancer. , 2019, , .		1
35	Efficient Video Indexing for Monitoring Disease Activity and Progression in the Upper Gastrointestinal Tract. , 2019, , .		4
36	The use of digital pathology and image analysis in clinical trials. Journal of Pathology: Clinical Research, 2019, 5, 81-90.	1.3	71

JENS RITTSCHER

#	Article	IF	CITATIONS
37	Protein Tracking By CNN-Based Candidate Pruning And Two-Step Linking With Bayesian Network. , 2019, ,		4
38	Precision immunoprofiling by image analysis and artificial intelligence. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 474, 511-522.	1.4	101
39	Conv2Warp: An Unsupervised Deformable Image Registration with Continuous Convolution and Warping. Lecture Notes in Computer Science, 2019, , 489-497.	1.0	7
40	Motion sensing superpixels (MOSES) is a systematic computational framework to quantify and discover cellular motion phenotypes. ELife, 2019, 8, .	2.8	21
41	Characterization of Biological Motion Using Motion Sensing Superpixels. Bio-protocol, 2019, 9, e3365.	0.2	2
42	Identification of C. elegans Strains Using a Fully Convolutional Neural Network on Behavioural Dynamics. Lecture Notes in Computer Science, 2019, , 455-464.	1.0	5
43	Semantic Filtering Through Deep Source Separation on Microscopy Images. Lecture Notes in Computer Science, 2019, , 498-506.	1.0	Ο
44	Global probabilistic models for enhancing segmentation with convolutional networks. , 2018, , .		2
45	Improving Whole Slide Segmentation Through Visual Context - A Systematic Study. Lecture Notes in Computer Science, 2018, , 192-200.	1.0	27
46	Sensorless adaptive optics for isoSTED nanoscopy. , 2018, , .		2
47	Analysis of live cell images: Methods, tools and opportunities. Methods, 2017, 115, 65-79.	1.9	65
48	Discovery of Rare Phenotypes in Cellular Images Using Weakly Supervised Deep Learning. , 2017, , .		4
49	Towards quantifying the impact of cell boundary estimation on morphometric analysis for phenotypic screening. , 2015, , .		3
50	Cell segmentation and classification by hierarchical supervised shape ranking. , 2015, , .		10
51	Epithelial Cell Segmentation via Shape Ranking. Lecture Notes in Computational Vision and Biomechanics, 2014, , 315-338.	0.5	1
52	Cell segmentation and classification via unsupervised shape ranking. , 2013, , .		9
53	Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proceedings of the United States of America, 2013, 110, 11982-11987.	3.3	605
54	Monitoring cardiomyocyte motionin real time through image registration and time series analysis. , 2012		4

2012, , .

JENS RITTSCHER

#	Article	IF	CITATIONS
55	Tissue segmentation and classification using graph-based unsupervised clustering. , 2012, , .		Ο
56	Digitally adjusting chromogenic dye proportions in brightfield microscopy images. Journal of Microscopy, 2012, 245, 319-330.	0.8	16
57	LPSM: Fitting shape model by linear programming. , 2011, , .		0
58	Appearance-based person reidentification in camera networks: problem overview and current approaches. Journal of Ambient Intelligence and Humanized Computing, 2011, 2, 127-151.	3.3	142
59	Coupled minimum-cost flow cell tracking for high-throughput quantitative analysis. Medical Image Analysis, 2011, 15, 650-668.	7.0	124
60	Quantitative biological studies enabled by robust cell tracking. , 2011, , .		4
61	ldentifying Nuclear Phenotypes Using Semi-supervised Metric Learning. Lecture Notes in Computer Science, 2011, 22, 398-410.	1.0	7
62	Multi-class Object Layout with Unsupervised Image Classification and Object Localization. Lecture Notes in Computer Science, 2011, , 573-585.	1.0	1
63	Non-parametric Population Analysis of Cellular Phenotypes. Lecture Notes in Computer Science, 2011, 14, 343-351.	1.0	4
64	Characterization of Biological Processes through Automated Image Analysis. Annual Review of Biomedical Engineering, 2010, 12, 315-344.	5.7	64
65	Automated Training Data Generation for Microscopy Focus Classification. Lecture Notes in Computer Science, 2010, 13, 446-453.	1.0	9
66	Spatio-temporal cell cycle phase analysis using level sets and fast marching methods. Medical Image Analysis, 2009, 13, 143-155.	7.0	117
67	A model change detection approach to dynamic scene modeling. , 2009, , .		11
68	Coupled Minimum-Cost Flow Cell Tracking. Lecture Notes in Computer Science, 2009, 21, 374-385.	1.0	20
69	Spatio-temporal cell segmentation and tracking for automated screening. , 2008, , .		31
70	Methods for monitoring cellular motion and function. , 2008, , .		1
71	Shape and Appearance Context Modeling. , 2007, , .		357
72	An intelligent video framework for homeland protection. , 2007, , .		17

5

JENS RITTSCHER

#	Article	IF	CITATIONS
73	View adaptive detection and distributed site wide tracking. , 2007, , .		8
74	Validation Methods for Cell Cycle Analysis Algorithms in Confocal Fluorescence Images. , 2006, , .		0
75	Mathematical modelling of animate and intentional motion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 475-490.	1.8	20
76	An HMM-based segmentation method for traffic monitoring movies. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24, 1291-1296.	9.7	84
77	Towards the automatic analysis of complex human body motions. Image and Vision Computing, 2002, 20, 905-916.	2.7	31
78	Learning and classification of complex dynamics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22, 1016-1034.	9.7	144