Kenjiro Shirane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6476685/publications.pdf Version: 2024-02-01

KENIIDO SHIDANE

#	Article	IF	CITATIONS
1	Dual role of <i>Ovol2</i> on the germ cell lineage segregation during gastrulation in mouse embryogenesis. Development (Cambridge), 2022, 149, .	2.5	6
2	The dynamic chromatin landscape and mechanisms of DNA methylation during mouse germ cell development. Genes and Genetic Systems, 2022, , .	0.7	4
3	The DNMT3A PWWP domain is essential for the normal DNA methylation landscape in mouse somatic cells and oocytes. PLoS Genetics, 2021, 17, e1009570.	3.5	17
4	Paternal MTHFR deficiency leads to hypomethylation of young retrotransposons and reproductive decline across two successive generations. Development (Cambridge), 2021, 148, .	2.5	15
5	Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing. Nature Communications, 2021, 12, 7020.	12.8	26
6	NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nature Genetics, 2020, 52, 1088-1098.	21.4	96
7	Derivation of Human Trophoblast Stem Cells. Cell Stem Cell, 2018, 22, 50-63.e6.	11.1	570
8	Generation of human oogonia from induced pluripotent stem cells in vitro. Science, 2018, 362, 356-360.	12.6	221
9	LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation. Nature Communications, 2018, 9, 3331.	12.8	65
10	<i>In vitro</i> expansion of mouse primordial germ cellâ€like cells recapitulates an epigenetic blank slate. EMBO Journal, 2017, 36, 1888-1907.	7.8	92
11	Software updates in the Illumina HiSeq platform affect whole-genome bisulfite sequencing. BMC Genomics, 2017, 18, 31.	2.8	29
12	InÂVitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells. Cell Reports, 2016, 17, 2789-2804.	6.4	136
13	Global Landscape and Regulatory Principles of DNA Methylation Reprogramming for Germ Cell Specification by Mouse Pluripotent Stem Cells. Developmental Cell, 2016, 39, 87-103.	7.0	106
14	Allele-Specific Methylome and Transcriptome Analysis Reveals Widespread Imprinting in the Human Placenta. American Journal of Human Genetics, 2016, 99, 1045-1058.	6.2	103
15	De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nature Cell Biology, 2016, 18, 225-233.	10.3	205
16	DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis. BMC Genomics, 2015, 16, 624.	2.8	112
17	<i>Setdb1</i> is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes and Development, 2014, 28, 2041-2055.	5.9	228
18	Mouse Oocyte Methylomes at Base Resolution Reveal Genome-Wide Accumulation of Non-CpG Methylation and Role of DNA Methyltransferases. PLoS Genetics, 2013, 9, e1003439.	3.5	263