Kenjiro Shirane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6476685/publications.pdf

Version: 2024-02-01

	623734	839539
2,295	14	18
citations	h-index	g-index
10	1.0	2122
19	19	3123
docs citations	times ranked	citing authors
	citations 19	2,295 14 citations h-index 19 19

#	Article	IF	CITATIONS
1	Derivation of Human Trophoblast Stem Cells. Cell Stem Cell, 2018, 22, 50-63.e6.	11.1	570
2	Mouse Oocyte Methylomes at Base Resolution Reveal Genome-Wide Accumulation of Non-CpG Methylation and Role of DNA Methyltransferases. PLoS Genetics, 2013, 9, e1003439.	3.5	263
3	<i>Setdb1</i> is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes and Development, 2014, 28, 2041-2055.	5.9	228
4	Generation of human oogonia from induced pluripotent stem cells in vitro. Science, 2018, 362, 356-360.	12.6	221
5	De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nature Cell Biology, 2016, 18, 225-233.	10.3	205
6	InÂVitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells. Cell Reports, 2016, 17, 2789-2804.	6.4	136
7	DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis. BMC Genomics, 2015, 16, 624.	2.8	112
8	Global Landscape and Regulatory Principles of DNA Methylation Reprogramming for Germ Cell Specification by Mouse Pluripotent Stem Cells. Developmental Cell, 2016, 39, 87-103.	7. O	106
9	Allele-Specific Methylome and Transcriptome Analysis Reveals Widespread Imprinting in the Human Placenta. American Journal of Human Genetics, 2016, 99, 1045-1058.	6.2	103
10	NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nature Genetics, 2020, 52, 1088-1098.	21.4	96
11	<i>In vitro</i> expansion of mouse primordial germ cellâ€like cells recapitulates an epigenetic blank slate. EMBO Journal, 2017, 36, 1888-1907.	7.8	92
12	LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation. Nature Communications, 2018, 9, 3331.	12.8	65
13	Software updates in the Illumina HiSeq platform affect whole-genome bisulfite sequencing. BMC Genomics, 2017, 18, 31.	2.8	29
14	Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing. Nature Communications, 2021, 12, 7020.	12.8	26
15	The DNMT3A PWWP domain is essential for the normal DNA methylation landscape in mouse somatic cells and oocytes. PLoS Genetics, 2021, 17, e1009570.	3. 5	17
16	Paternal MTHFR deficiency leads to hypomethylation of young retrotransposons and reproductive decline across two successive generations. Development (Cambridge), 2021, 148, .	2.5	15
17	Dual role of $\langle i \rangle$ Ovol2 $\langle i \rangle$ on the germ cell lineage segregation during gastrulation in mouse embryogenesis. Development (Cambridge), 2022, 149, .	2.5	6
18	The dynamic chromatin landscape and mechanisms of DNA methylation during mouse germ cell development. Genes and Genetic Systems, 2022, , .	0.7	4