Xiaofeng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6476355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A droplet-based electricity generator with high instantaneous power density. Nature, 2020, 578, 392-396.	27.8	871
2	Topological liquid diode. Science Advances, 2017, 3, eaao3530.	10.3	249
3	Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Nature Communications, 2015, 6, 7986.	12.8	229
4	Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion. Scientific Reports, 2013, 3, 2515.	3.3	166
5	Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 24053-24064.	10.3	133
6	Effect of fluorine doping and sulfur vacancies of CuCo2S4 on its electrochemical performance in supercapacitors. Chemical Engineering Journal, 2020, 390, 124643.	12.7	132
7	Long-range spontaneous droplet self-propulsion on wettability gradient surfaces. Scientific Reports, 2017, 7, 7552.	3.3	113
8	SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. National Science Review, 2019, 6, 540-550.	9.5	110
9	Toward large-scale fabrication of triboelectric nanogenerator (TENG) with silk-fibroin patches film via spray-coating process. Nano Energy, 2017, 41, 359-366.	16.0	105
10	Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure. ACS Applied Materials & Interfaces, 2017, 9, 24148-24154.	8.0	103
11	A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting. Nano Energy, 2021, 82, 105735.	16.0	89
12	A self-powered and high sensitivity acceleration sensor with V-Q-a model based on triboelectric nanogenerators (TENGs). Nano Energy, 2020, 67, 104228.	16.0	83
13	Humidity detection by nanostructured ZnO: A wireless quartz crystal microbalance investigation. Sensors and Actuators A: Physical, 2007, 135, 209-214.	4.1	68
14	A self-powered acceleration sensor with flexible materials based on triboelectric effect. Nano Energy, 2017, 31, 469-477.	16.0	64
15	Humidity sensor based on quartz tuning fork coated with sol–gel-derived nanocrystalline zinc oxide thin film. Sensors and Actuators B: Chemical, 2007, 123, 299-305.	7.8	62
16	Boosting the output performance of volume effect electricity generator (VEEG) with water column. Nano Energy, 2020, 73, 104748.	16.0	62
17	Self-propelled droplet-based electricity generation. Nanoscale, 2018, 10, 23164-23169.	5.6	49
18	Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure. Microelectronic Engineering, 2015, 131, 51-57.	2.4	46

XIAOFENG ZHOU

#	Article	IF	CITATIONS
19	Rapid and Persistent Suction Condensation on Hydrophilic Surfaces for High-Efficiency Water Collection. Nano Letters, 2021, 21, 7411-7418.	9.1	45
20	A new strategy for synthesis of hierarchical MnO2–Mn3O4 nanocomposite via reduction-induced exfoliation of MnO2 nanowires and its application in high-performance asymmetric supercapacitor. Composites Part B: Engineering, 2019, 178, 107501.	12.0	43
21	A bulk effect liquid-solid generator with 3D electrodes for wave energy harvesting. Nano Energy, 2021, 87, 106218.	16.0	41
22	Inhibiting Random Droplet Motion on Hot Surfaces by Engineering Symmetryâ€Breaking Janusâ€Mushroom Structure. Advanced Materials, 2020, 32, e1907999.	21.0	38
23	Rectification of Mobile Leidenfrost Droplets by Planar Ratchets. Small, 2020, 16, e1901751.	10.0	32
24	Harvesting ultralow frequency (< 1†Hz) mechanical energy using triboelectric nanogenerator. Nano Energy, 2019, 65, 104011.	16.0	31
25	Theoretical investigation and experimental verification of the self-powered acceleration sensor based on triboelectric nanogenerators (TENGs). Extreme Mechanics Letters, 2021, 42, 101021.	4.1	28
26	A novel sandwich capacitive accelerometer with a symmetrical structure fabricated from a D-SOI wafer. Journal of Micromechanics and Microengineering, 2012, 22, 085031.	2.6	27
27	A flexible resistive temperature detector (RTD) based on in-situ growth of patterned Ag film on polyimide without lithography. Microelectronic Engineering, 2019, 216, 111052.	2.4	25
28	Dynamic control of droplet jumping by tailoring nanoparticle concentrations. Applied Physics Letters, 2016, 109, .	3.3	23
29	Toward Self-Powered Inertial Sensors Enabled by Triboelectric Effect. ACS Applied Electronic Materials, 2020, 2, 3072-3087.	4.3	23
30	Paper-Based ZnS:Cu Alternating Current Electroluminescent Devices for Current Humidity Sensors with High–Linearity and Flexibility. Sensors, 2019, 19, 4607.	3.8	22
31	A novel capacitive accelerometer with an eight-beam-mass structure by self-stop anisotropic etching of (1 0 0) silicon. Journal of Micromechanics and Microengineering, 2008, 18, 075005.	2.6	20
32	Bioinspired Interfacial Strengthening Flexible Supercapacitors via Hierarchically Topological Interlocking Strategy. ACS Applied Materials & Interfaces, 2019, 11, 38303-38312.	8.0	14
33	Machine learning-guided design and development of multifunctional flexible Ag/poly (amic acid) composites using the differential evolution algorithm. Nanoscale, 2020, 12, 3988-3996.	5.6	14
34	Controlled cell patterning on bioactive surfaces with special wettability. Journal of Bionic Engineering, 2017, 14, 440-447.	5.0	13
35	Directional Liquid Transport from the Cold Region to the Hot Region on a Topological Surface. Langmuir, 2021, 37, 5059-5065.	3.5	13
36	Single wafer fabrication of a symmetric double-sided beam–mass structure using DRIE and wet etching by a novel vertical sidewall protection technique. Journal of Micromechanics and Microengineering, 2010, 20, 115009.	2.6	11

XIAOFENG ZHOU

#	Article	IF	CITATIONS
37	One-step synthesis of oxygen-deficient manganese dioxides sponge-like 3D architecture for high-performance supercapacitors. Journal of Alloys and Compounds, 2019, 809, 151790.	5.5	11
38	Strengthening unidirectional liquid pumping using multi-biomimetic structures. Extreme Mechanics Letters, 2021, 43, 101144.	4.1	11
39	Fabrication of a MEMS capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure. Microsystem Technologies, 2014, 20, 1365-1372.	2.0	10
40	Flexible topological liquid diode catheter. Materials Today Physics, 2020, 12, 100170.	6.0	8
41	A MEMS accelerometer with double-sided symmetrical folded-beams on single wafer. , 2017, , .		4
42	A water droplet motion energy harvester with wafer-level fabrication method. Journal of Micromechanics and Microengineering, 2020, 30, 065006.	2.6	3
43	Control and Patterning of Various Hydrophobic Surfaces: In-situ Modification Realized by Flexible Atmospheric Plasma Stamp Technique. Journal of Bionic Engineering, 2020, 17, 436-447.	5.0	2
44	Capture of circulating tumor cells with superhydrophilic silicon dioxide nano pillar structure without capture antibodies. , 2015, , .		1
45	Design and fabrication of a micro-electromechanical system sandwich capacitive accelerometer. , 2014, , .		0
46	Development of cell microarray by using superhydrophilic silicon dioxide nano structure. , 2016, , .		0