Subhadip Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6476138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications. Materials Today, 2023, 66, 159-193.	14.2	59
2	Subpicosecond Hot Hole Transfer in a Graphene Quantum Dot Composite with High Efficiency. Journal of Physical Chemistry Letters, 2022, 13, 606-613.	4.6	8
3	Synthesis of Cs/Methylammonium/Formamidinium PbBr ₃ Perovskite Nanocrystals with Green Emissions: Implications for Display Applications. ACS Applied Nano Materials, 2022, 5, 4360-4366.	5.0	11
4	Enzymes as Active Matter. Annual Review of Condensed Matter Physics, 2021, 12, 177-200.	14.5	37
5	Critical Phenomena in Plasma Membrane Organization and Function. Annual Review of Physical Chemistry, 2021, 72, 51-72.	10.8	42
6	Enzyme aggregation and fragmentation induced by catalysis relevant species. Physical Chemistry Chemical Physics, 2021, 23, 20709-20717.	2.8	5
7	Protein-templated gold nanoclusters as specific bio-imaging probes for the detection of Hg(ii) ions in in vivo and in vitro systems: discriminating between MDA-MB-231 and MCF10A cells. Analyst, The, 2021, 146, 1455-1463.	3.5	22
8	Ultrafast Interfacial Electron Transfer from Graphene Quantum Dot to 2,4-Dinitrotoluene. Journal of Physical Chemistry C, 2021, 125, 9638-9645.	3.1	13
9	Revealing Explicit Microsecond Carrier Diffusion from One Emission Center to Another in an All-Inorganic Perovskite Nanocrystal. Journal of Physical Chemistry Letters, 2021, 12, 5413-5422.	4.6	10
10	Femtosecond Upconversion Study of Interfacial Electron Transfer from Photoexcited CsPbBr ₃ Perovskite Nanocrystal to Rhodamine 6G. Journal of Physical Chemistry B, 2021, 125, 11017-11025.	2.6	7
11	Subpicosecond Charge Separation Time Scale at Graphene Quantum Dot Surface. Journal of Physical Chemistry C, 2020, 124, 24115-24125.	3.1	12
12	Study of Interfacial Charge Transfer from an Electron Rich Organic Molecule to CdTe Quantum Dot by using Sternâ€Volmer and Stochastic Kinetic Models. ChemPhysChem, 2020, 21, 415-422.	2.1	11
13	Motility of Enzyme-Powered Vesicles. Nano Letters, 2019, 19, 6019-6026.	9.1	52
14	Nonuniform Crowding Enhances Transport. ACS Nano, 2019, 13, 8946-8956.	14.6	15
15	Role of Emissive and Nonâ€Emissive Complex Formations in Photoinduced Electron Transfer Reaction of CdTe Quantum Dots. Chemistry - an Asian Journal, 2019, 14, 4207-4216.	3.3	12
16	Positive and negative chemotaxis of enzyme-coated liposome motors. Nature Nanotechnology, 2019, 14, 1129-1134.	31.5	152
17	Ground-State Heterogeneity along with Fluorescent Byproducts Causes Excitation-Dependent Fluorescence and Time-Dependent Spectral Migration in Citric Acid-Derived Carbon Dots. Journal of Physical Chemistry Letters, 2019, 10, 335-345.	4.6	29
18	Probing of Reorganization Dynamics within the Different Phases of Themotropic Liquid Crystals. ChemistrySelect, 2018, 3, 1551-1560.	1.5	2

SUBHADIP GHOSH

#	Article	IF	CITATIONS
19	An Approach to a Model Free Analysis of Excited-State Proton Transfer Kinetics in a Reverse Micelle. Journal of Physical Chemistry C, 2018, 122, 732-740.	3.1	12
20	Spectroscopic and Calorimetric Studies of Molecular Recognitions in a Dendrimer–Surfactant Complex. Langmuir, 2018, 34, 817-825.	3.5	11
21	Modelâ€Free Estimation of Energyâ€Transfer Timescales in a Closely Emitting CdSe/ZnS Quantum Dot and Rhodamineâ€6G FRET Couple. Chemistry - an Asian Journal, 2018, 13, 3296-3303.	3.3	13
22	Encapsulation and Residency of a Hydrophobic Dye within the Water-Filled Interior of a PAMAM Dendrimer Molecule. Journal of Physical Chemistry B, 2017, 121, 1930-1940.	2.6	6
23	Micelles entrapped Cresyl Violet can selectively detect copper and mercury ions in solution: A fluorescence Correlation Spectroscopy investigation. Chemical Physics Letters, 2017, 682, 147-153.	2.6	8
24	Chemotaxis of Molecular Dyes in Polymer Gradients in Solution. Journal of the American Chemical Society, 2017, 139, 15588-15591.	13.7	28
25	The study of electron transfer reactions in a dendrimeric assembly: proper utilization of dendrimer fluorescence. Physical Chemistry Chemical Physics, 2016, 18, 24830-24834.	2.8	21
26	A deeper insight into an intriguing acetonitrile–water binary mixture: synergistic effect, dynamic Stokes shift, fluorescence correlation spectroscopy, and NMR studies. Physical Chemistry Chemical Physics, 2016, 18, 32308-32318.	2.8	13
27	Study of Diffusion-Assisted Bimolecular Electron Transfer Reactions: CdSe/ZnS Core–Shell Quantum Dot Acts as an Efficient Electron Donor and Acceptor. Journal of Physical Chemistry C, 2016, 120, 13456-13465.	3.1	16
28	Diffusion Assisted Bimolecular Electron Injection to CdS Quantum Dots: Existence of Different Regimes in Time Dependent Sink Term of Collins–Kimball Model. Journal of Physical Chemistry C, 2016, 120, 5308-5314.	3.1	16
29	Study of Microheterogeneity in Acetonitrile–Water Binary Mixtures by using Polarityâ€Resolved Solvation Dynamics. ChemPhysChem, 2015, 16, 3518-3526.	2.1	15
30	Photostable Copper Nanoclusters: Compatible Förster Resonance Energy-Transfer Assays and a Nanothermometer. Journal of Physical Chemistry Letters, 2015, 6, 1293-1298.	4.6	75
31	Fluorescent Biotin Analogues for Microstructure Patterning and Selective Protein Immobilization. Langmuir, 2015, 31, 12573-12578.	3.5	2
32	Kinetic Aspects of Enzyme-Mediated Evolution of Highly Luminescent Meta Silver Nanoclusters. Journal of Physical Chemistry C, 2015, 119, 10776-10784.	3.1	17
33	Structural Aspects of a Protein–Surfactant Assembly: Native and Reduced States of Human Serum Albumin. Protein Journal, 2015, 34, 147-157.	1.6	21
34	Luminescent Copper Nanoclusters as a Specific Cell-Imaging Probe and a Selective Metal Ion Sensor. Journal of Physical Chemistry C, 2015, 119, 24657-24664.	3.1	149
35	Probe dependent anomalies in the solvation dynamics of coumarin dyes in dimethyl sulfoxide–glycerol binary solvent: confirming the local environments are different for coumarin dyes. Physical Chemistry Chemical Physics, 2014, 16, 22352-22363.	2.8	31
36	Morphology dependent photoinduced electron transfer from N,N-dimethylaniline to semiconductor cadmium sulfide. RSC Advances, 2014, 4, 35531.	3.6	12

SUBHADIP GHOSH

#	Article	IF	CITATIONS
37	Luminescent Silver Nanoclusters Acting as a Label-Free Photoswitch in Metal Ion Sensing. Analytical Chemistry, 2014, 86, 3188-3194.	6.5	72
38	Probe Dependent Solvation Dynamics Study in a Microscopically Immiscible Dimethyl Sulfoxide–Glycerol Binary Solvent. Journal of Physical Chemistry B, 2014, 118, 7577-7585.	2.6	32
39	Micelles of Benzethonium Chloride undergoes spherical to cylindrical shape transformation: An intrinsic fluorescence and calorimetric approach. Chemical Physics Letters, 2014, 593, 115-121.	2.6	26
40	Temperature Induced Morphological Transitions from Native to Unfolded Aggregated States of Human Serum Albumin. Journal of Physical Chemistry B, 2014, 118, 7267-7276.	2.6	45
41	Investigating the evolution of drug mediated silver nanoparticles. Analyst, The, 2013, 138, 4270.	3.5	10
42	Evaluation of intramolecular charge transfer state of 4-N, N-dimethylamino cinnamaldehyde using time-dependent density functional theory. Journal of Chemical Sciences, 2013, 125, 933-938.	1.5	6
43	Toggling Between Blue- and Red-Emitting Fluorescent Silver Nanoclusters. Journal of Physical Chemistry Letters, 2012, 3, 3605-3609.	4.6	71
44	A Fluorescence Correlation Spectroscopy Study of the Diffusion of an Organic Dye in the Gel Phase and Fluid Phase of a Single Lipid Vesicle. Journal of Physical Chemistry B, 2010, 114, 5736-5741.	2.6	38
45	Study of Diffusion of Organic Dyes in a Triblock Copolymer Micelle and Gel by Fluorescence Correlation Spectroscopy. Chemistry - an Asian Journal, 2009, 4, 948-954.	3.3	53
46	Ultrafast fluorescence resonance energy transfer in a bile salt aggregate: Excitation wavelength dependence. Journal of Chemical Sciences, 2008, 120, 15-23.	1.5	13
47	A Femtosecond Study of Excitation Wavelength Dependence of a Triblock Copolymerâ^'Surfactant Supramolecular Assembly:  (PEO) ₂₀ â^'(PPO) ₇₀ â^'(PEO) ₂₀ and CTAC. Journal of Physical Chemistry B, 2008, 112, 5020-5026.	2.6	30
48	Solvation Dynamics in Ionic Liquid Swollen P123 Triblock Copolymer Micelle: A Femtosecond Excitation Wavelength Dependence Study. Journal of Physical Chemistry B, 2008, 112, 6350-6357.	2.6	42
49	Femtosecond Solvation Dynamics in Different Regions of a Bile Salt Aggregate:  Excitation Wavelength Dependence. Journal of Physical Chemistry B, 2008, 112, 3575-3580.	2.6	20
50	Ultrafast photoinduced electron transfer from dimethylaniline to coumarin dyes in sodium dodecyl sulfate and triton X-100 micelles. Journal of Chemical Physics, 2007, 126, 204708.	3.0	41
51	Excitation Wavelength Dependence of Solvation Dynamics in a Gel. (PEO)20â^'(PPO)70â^'(PEO)20Triblock Copolymerâ€. Journal of Physical Chemistry C, 2007, 111, 8775-8780.	3.1	35
52	Ultrafast Dynamics in Biological Systems and in Nano-Confined Environments. Bulletin of the Chemical Society of Japan, 2007, 80, 1033-1043.	3.2	33
53	Ultrafast Fluorescence Resonance Energy Transfer in the Micelle and the Gel Phase of a PEOâ^'PPOâ^'PEO Triblock Copolymer:Â Excitation Wavelength Dependence. Journal of Physical Chemistry B, 2007, 111, 7085-7091.	2.6	45
54	Femtosecond Solvation Dynamics in a Neat Ionic Liquid and Ionic Liquid Microemulsion:  Excitation Wavelength Dependence. Journal of Physical Chemistry B, 2007, 111, 12809-12816.	2.6	147

SUBHADIP GHOSH

#	Article	IF	CITATIONS
55	Study of organized and biological systems using an ultrafast laser. International Reviews in Physical Chemistry, 2007, 26, 421-448.	2.3	23
56	Ultrafast Proton Transfer of Pyranine in a Supramolecular Assembly:  PEOâ^'PPOâ^'PEO Triblock Copolymer and CTAC. Journal of Physical Chemistry B, 2007, 111, 13504-13510.	2.6	28
57	Excited-state proton transfer from pyranine to acetate in methanol. Journal of Chemical Sciences, 2007, 119, 71-76.	1.5	21
58	Femtosecond Study of Partially Folded States of Cytochrome C by Solvation Dynamics. Journal of Physical Chemistry B, 2006, 110, 1056-1062.	2.6	42
59	Temperature dependence of solvation dynamics and anisotropy decay in a protein: ANS in bovine serum albumin. Journal of Chemical Physics, 2006, 124, 124909.	3.0	69
60	A femtosecond study of excitation wavelength dependence of solvation dynamics in a PEO-PPO-PEO triblock copolymer micelle. Journal of Chemical Physics, 2006, 124, 204905.	3.0	76
61	Ultrafast Electron Transfer in a Nanocavity. Dimethylaniline to Coumarin Dyes in Hydroxypropyl γ-Cyclodextrin. Journal of Physical Chemistry A, 2006, 110, 13139-13144.	2.5	46
62	Excited-State Proton Transfer from Pyranine to Acetate in γ-Cyclodextrin and Hydroxypropyl γ-Cyclodextrin. Journal of Physical Chemistry A, 2006, 110, 13646-13652.	2.5	50
63	A Femtosecond Study of Excitation-Wavelength Dependence of Solvation Dynamics in a Vesicle. Chemistry - an Asian Journal, 2006, 1, 188-194.	3.3	33
64	Ultrafast fluorescence resonance energy transfer in a micelle. Journal of Chemical Physics, 2006, 125, 044714.	3.0	41
65	A femtosecond study of photoinduced electron transfer from dimethylaniline to coumarin dyes in a cetyltrimethylammonium bromide micelle. Journal of Chemical Physics, 2006, 125, 054509.	3.0	44
66	Excited state proton transfer of pyranine in a γ-cyclodextrin cavity. Chemical Physics Letters, 2005, 412, 228-234.	2.6	103
67	Temperature Dependence of Anisotropy Decay and Solvation Dynamics of Coumarin 153 in Î ³ -Cyclodextrin Aggregates. Journal of Physical Chemistry A, 2005, 109, 7359-7364.	2.5	63
68	Fluorescence Anisotropy Decay and Solvation Dynamics in a Nanocavity:  Coumarin 153 in Methyl β-Cyclodextrins. Journal of Physical Chemistry A, 2005, 109, 9716-9722.	2.5	89