
Jay C Horvat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6475444/publications.pdf Version: 2024-02-01

INV C HODVAT

#	Article	IF	CITATIONS
1	Endoplasmic reticulum-unfolded protein response signalling is altered in severe eosinophilic and neutrophilic asthma. Thorax, 2022, 77, 443-451.	5.6	18
2	Relationship between type 2 cytokine and inflammasome responses in obesity-associated asthma. Journal of Allergy and Clinical Immunology, 2022, 149, 1270-1280.	2.9	21
3	Aim2 suppresses cigarette smokeâ€induced neutrophil recruitment, neutrophil caspaseâ€1 activation and antiâ€Ly6Câ€mediated neutrophil depletion. Immunology and Cell Biology, 2022, 100, 235-249.	2.3	7
4	Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metabolism, 2022, 34, 487-501.e8.	16.2	107
5	Generation of cardio-protective antibodies after pneumococcal polysaccharide vaccine: Early results from a randomised controlled trial. Atherosclerosis, 2022, 346, 68-74.	0.8	7
6	Airway and parenchymal transcriptomics in a novel model of asthma and COPD overlap. Journal of Allergy and Clinical Immunology, 2022, 150, 817-829.e6.	2.9	8
7	Human βâ€defensinâ€2 suppresses key features of asthma in murine models of allergic airways disease. Clinical and Experimental Allergy, 2021, 51, 120-131.	2.9	19
8	Asthma-COPD overlap: current understanding and the utility of experimental models. European Respiratory Review, 2021, 30, 190185.	7.1	23
9	Pharmacological HIF-1 stabilization promotes intestinal epithelial healing through regulation of α-integrin expression and function. American Journal of Physiology - Renal Physiology, 2021, 320, G420-G438.	3.4	20
10	Casting Iron in the Pathogenesis of Fibrotic Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 130-131.	2.9	2
11	T-helper 22 cells develop as a distinct lineage from Th17 cells during bacterial infection and phenotypic stability is regulated by T-bet. Mucosal Immunology, 2021, 14, 1077-1087.	6.0	13
12	NLRP1 variant M1184V decreases inflammasome activation in the context of DPP9 inhibition and asthma severity. Journal of Allergy and Clinical Immunology, 2021, 147, 2134-2145.e20.	2.9	11
13	Necroptosis Signaling Promotes Inflammation, Airway Remodeling, and Emphysema in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 667-681.	5.6	85
14	A microRNA-21–mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Science Translational Medicine, 2021, 13, eaav7223.	12.4	54
15	Investigating the Links between Lower Iron Status in Pregnancy and Respiratory Disease in Offspring Using Murine Models. Nutrients, 2021, 13, 4461.	4.1	2
16	Assessment of evidence for or against contributions of Chlamydia pneumoniae infections to Alzheimer's disease etiology. Brain, Behavior, and Immunity, 2020, 83, 22-32.	4.1	18
17	Quantitative Nondestructive Assessment of Paenibacillus larvae in Apis mellifera Hives. Advances in Intelligent Systems and Computing, 2020, , 579-583.	0.6	3
18	Sex Steroids Induce Membrane Stress Responses and Virulence Properties in Pseudomonas aeruginosa. MBio, 2020, 11, .	4.1	10

JAY C HORVAT

#	Article	IF	CITATIONS
19	Functional Dyspepsia and Food: Immune Overlap with Food Sensitivity Disorders. Current Gastroenterology Reports, 2020, 22, 51.	2.5	16
20	Cissampelos sympodialis and Warifteine Suppress Anxiety-Like Symptoms and Allergic Airway Inflammation in Acute Murine Asthma Model. Revista Brasileira De Farmacognosia, 2020, 30, 224-232.	1.4	4
21	Crucial role for lung iron level and regulation in the pathogenesis and severity of asthma. European Respiratory Journal, 2020, 55, 1901340.	6.7	40
22	Critical role for iron accumulation in the pathogenesis of fibrotic lung disease. Journal of Pathology, 2020, 251, 49-62.	4.5	67
23	<i>Chlamydia muridarum</i> infection differentially alters smooth muscle function in mouse uterine horn and cervix. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E981-E994.	3.5	7
24	Saturated fatty acids, obesity, and the nucleotide oligomerization domain–like receptor protein 3 (NLRP3) inflammasome in asthmatic patients. Journal of Allergy and Clinical Immunology, 2019, 143, 305-315.	2.9	83
25	IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis. European Respiratory Journal, 2019, 54, 1800174.	6.7	54
26	Cellular mechanisms underlying steroid-resistant asthma. European Respiratory Review, 2019, 28, 190096.	7.1	63
27	Short-chain fatty acids increase TNFα-induced inflammation in primary human lung mesenchymal cells through the activation of p38 MAPK. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L157-L174.	2.9	39
28	Evidence for Local and Systemic Immune Activation in Functional Dyspepsia and the Irritable Bowel Syndrome: A Systematic Review. American Journal of Gastroenterology, 2019, 114, 429-436.	0.4	93
29	Dietary Fatty Acids Amplify Inflammatory Responses to Infection through p38 MAPK Signaling. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 554-568.	2.9	30
30	Fibulin-1c regulates transforming growth factor–β activation in pulmonary tissue fibrosis. JCI Insight, 2019, 4, .	5.0	42
31	Polycomb repressive complex 2 is a critical mediator of allergic inflammation. JCI Insight, 2019, 4, .	5.0	16
32	Toll-like receptor 2 and 4 have Opposing Roles in the Pathogenesis of Cigarette Smoke-induced Chronic Obstructive Pulmonary Disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, ajplung.00154.2.	2.9	37
33	IL-6 Drives Neutrophil-Mediated Pulmonary Inflammation Associated with Bacteremia in Murine Models of Colitis. American Journal of Pathology, 2018, 188, 1625-1639.	3.8	46
34	Dietary omega-6, but not omega-3, polyunsaturated or saturated fatty acids increase inflammation in primary lung mesenchymal cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L922-L935.	2.9	18
35	Roles for T/B lymphocytes and ILC2s in experimental chronic obstructive pulmonary disease. Journal of Leukocyte Biology, 2018, 105, 143-150.	3.3	55
36	Seroreactivity to Microbial Antigens and Gutâ€Homing Immune Responses in Functional Dyspepsia Patients with Postprandial Distress Syndrome. FASEB Journal, 2018, 32, 613.3.	0.5	0

JAY C HORVAT

#	Article	IF	CITATIONS
37	Inflammasomes in the lung. Molecular Immunology, 2017, 86, 44-55.	2.2	126
38	Role for NLRP3 Inflammasome–mediated, IL-1β–Dependent Responses in Severe, Steroid-Resistant Asthma. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 283-297.	5.6	304
39	Role of iron in the pathogenesis of respiratory disease. International Journal of Biochemistry and Cell Biology, 2017, 88, 181-195.	2.8	77
40	Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. Journal of Pathology, 2017, 243, 510-523.	4.5	81
41	Mechanisms and treatments for severe, steroidâ€resistant allergic airway disease and asthma. Immunological Reviews, 2017, 278, 41-62.	6.0	119
42	MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase–mediated suppression of histone deacetylase 2. Journal of Allergy and Clinical Immunology, 2017, 139, 519-532.	2.9	176
43	Allergen-encoding bone marrow transfer inactivates allergic T cell responses, alleviating airway inflammation. JCI Insight, 2017, 2, .	5.0	12
44	<scp>COPD</scp> is characterized by increased detection of <scp><i>H</i></scp> <i>aemophilus influenzae</i> , <scp><i>S</i></scp> <i>treptococcus pneumoniae</i> and a deficiency of <scp><i>B</i></scp> <i>acillus</i> species. Respirology, 2016, 21, 697-704.	2.3	49
45	Elucidating novel disease mechanisms in severe asthma. Clinical and Translational Immunology, 2016, 5, e91.	3.8	28
46	Programmed Death Ligand 1 Promotes Early-LifeChlamydiaRespiratory Infection–Induced Severe Allergic Airway Disease. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 493-503.	2.9	20
47	Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases. JCI Insight, 2016, 1, .	5.0	100
48	A short-term mouse model that reproduces the immunopathological features of rhinovirus-induced exacerbation of COPD. Clinical Science, 2015, 129, 245-258.	4.3	38
49	Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-insensitive asthma. Thorax, 2015, 70, 458-467.	5.6	123
50	Inflammasomes in COPD and neutrophilic asthma. Thorax, 2015, 70, 1199-1201.	5.6	109
51	Potential mechanisms regulating pulmonary pathology in inflammatory bowel disease. Journal of Leukocyte Biology, 2015, 98, 727-737.	3.3	47
52	Altered lung function at mid-adulthood in mice following neonatal exposure to hyperoxia. Respiratory Physiology and Neurobiology, 2015, 218, 21-27.	1.6	13
53	Programming of formalin-induced nociception by neonatal LPS exposure: Maintenance by peripheral and central neuroimmune activity. Brain, Behavior, and Immunity, 2015, 44, 235-246.	4.1	17
54	Pulmonary Immunity during Respiratory Infections in Early Life and the Development of Severe Asthma. Annals of the American Thoracic Society, 2014, 11, S297-S302.	3.2	29

JAY C HORVAT

#	Article	IF	CITATIONS
55	Bronchiolar Remodeling in Adult Mice Following Neonatal Exposure to Hyperoxia: Relation to Growth. Anatomical Record, 2014, 297, 758-769.	1.4	21
56	A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. Journal of Allergy and Clinical Immunology, 2013, 131, 752-762.e7.	2.9	210
57	Interferon-ε Protects the Female Reproductive Tract from Viral and Bacterial Infection. Science, 2013, 339, 1088-1092.	12.6	197
58	Th2 cytokine antagonists: potential treatments for severe asthma. Expert Opinion on Investigational Drugs, 2013, 22, 49-69.	4.1	76
59	Programming of the Lung in Early Life by Bacterial Infections Predisposes to Chronic Respiratory Disease. Clinical Obstetrics and Gynecology, 2013, 56, 566-576.	1.1	14
60	Hypoxia and Integrin-Mediated Epithelial Restitution during Mucosal Inflammation. Frontiers in Immunology, 2013, 4, 272.	4.8	43
61	Chlamydia muridarum Lung Infection in Infants Alters Hematopoietic Cells to Promote Allergic Airway Disease in Mice. PLoS ONE, 2012, 7, e42588.	2.5	25
62	TLR2, but Not TLR4, Is Required for Effective Host Defence against Chlamydia Respiratory Tract Infection in Early Life. PLoS ONE, 2012, 7, e39460.	2.5	61
63	Interleukin-13 Promotes Susceptibility to Chlamydial Infection of the Respiratory and Genital Tracts. PLoS Pathogens, 2011, 7, e1001339.	4.7	68
64	Haemophilus influenzae Infection Drives IL-17-Mediated Neutrophilic Allergic Airways Disease. PLoS Pathogens, 2011, 7, e1002244.	4.7	144
65	Chlamydial Respiratory Infection during Allergen Sensitization Drives Neutrophilic Allergic Airways Disease. Journal of Immunology, 2010, 184, 4159-4169.	0.8	83
66	Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology. Journal of Allergy and Clinical Immunology, 2010, 125, 617-625.e6.	2.9	100
67	Immunological decisionâ€making: how does the immune system decide to mount a helper Tâ€cell response?. Immunology, 2008, 123, 326-338.	4.4	584
68	Understanding the mechanisms of viral induced asthma: New therapeutic directions. , 2008, 117, 313-353.		113
69	Neonatal Chlamydial Infection Induces Mixed T-Cell Responses That Drive Allergic Airway Disease. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 556-564.	5.6	126
70	Inhibition of allergic airways disease by immunomodulatory therapy with whole killed Streptococcus pneumoniae. Vaccine, 2007, 25, 8154-8162.	3.8	63
71	Comparison of intranasal and transcutaneous immunization for induction of protective immunity against Chlamydia muridarum respiratory tract infection. Vaccine, 2006, 24, 355-366.	3.8	41
72	Role of atypical bacterial infection of the lung in predisposition/protection of asthma. , 2004, 101, 193-210.		84