Michael C Mackey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6474577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chaos, Fractals, and Noise. Applied Mathematical Sciences (Switzerland), 1994, , .	0.4	1,014
2	PATHOLOGICAL CONDITIONS RESULTING FROM INSTABILITIES IN PHYSIOLOGICAL CONTROL SYSTEMS*. Annals of the New York Academy of Sciences, 1979, 316, 214-235.	1.8	280
3	A mathematical model of hematopoiesis—I. Periodic chronic myelogenous leukemia. Journal of Theoretical Biology, 2005, 237, 117-132.	0.8	234
4	Cyclical Neutropenia and Other Periodic Hematological Disorders: A Review of Mechanisms and Mathematical Models. Blood, 1998, 92, 2629-2640.	0.6	209
5	Feedback Regulation in the Lactose Operon: A Mathematical Modeling Study and Comparison with Experimental Data. Biophysical Journal, 2003, 84, 2841-2851.	0.2	201
6	Dynamical Diseases. Annals of the New York Academy of Sciences, 1987, 504, 16-32.	1.8	181
7	Hematopoietic Model with Moving Boundary Condition and State Dependent Delay: Applications in Erythropoiesis. Journal of Theoretical Biology, 1998, 190, 135-146.	0.8	165
8	Age-structured and two-delay models for erythropoiesis. Mathematical Biosciences, 1995, 128, 317-346.	0.9	163
9	Commodity price fluctuations: Price dependent delays and nonlinearities as explanatory factors. Journal of Economic Theory, 1989, 48, 497-509.	0.5	154
10	The dynamic origin of increasing entropy. Reviews of Modern Physics, 1989, 61, 981-1015.	16.4	145
11	A simple model for phase locking of biological oscillators. Journal of Mathematical Biology, 1979, 7, 339-352.	0.8	144
12	Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. Journal of Theoretical Biology, 2003, 223, 283-298.	0.8	141
13	Noise and critical behavior of the pupil light reflex at oscillation onset. Physical Review A, 1990, 41, 6992-7005.	1.0	133
14	Chaos in neurobiology. IEEE Transactions on Systems, Man, and Cybernetics, 1983, SMC-13, 790-798.	0.9	128
15	A mathematical model of hematopoiesis: II. Cyclical neutropenia. Journal of Theoretical Biology, 2005, 237, 133-146.	0.8	120
16	Cell kinetic status of haematopoietic stem cells. Cell Proliferation, 2001, 34, 71-83.	2.4	113
17	Dynamic hematological disease: a review. Journal of Mathematical Biology, 2009, 58, 285-322.	0.8	112
18	Dynamic regulation of the tryptophan operon: A modeling study and comparison with experimental data. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1364-1369.	3.3	109

#	Article	IF	CITATIONS
19	The dynamics of production and destruction: Analytic insight into complex behavior. Journal of Mathematical Biology, 1982, 16, 75-101.	0.8	107
20	Solution moment stability in stochastic differential delay equations. Physical Review E, 1995, 52, 3366-3376.	0.8	99
21	Solution multistability in firstâ€order nonlinear differential delay equations. Chaos, 1993, 3, 167-176.	1.0	92
22	Periodic chronic myelogenous leukaemia: spectral analysis of blood cell counts and aetiological implications. British Journal of Haematology, 1999, 104, 336-345.	1.2	89
23	Influence of Catabolite Repression and Inducer Exclusion on the Bistable Behavior of the lac Operon. Biophysical Journal, 2004, 86, 1282-1292.	0.2	87
24	Contribution to the study of periodic chronic myelogenous leukemia. Comptes Rendus - Biologies, 2004, 327, 235-244.	0.1	86
25	Origin of Bistability in the lac Operon. Biophysical Journal, 2007, 92, 3830-3842.	0.2	86
26	Consumer memory and price fluctuations in commodity markets: An integrodifferential model. Journal of Dynamics and Differential Equations, 1989, 1, 299-325.	1.0	83
27	Modelling transcriptional feedback loops: the role of Gro/TLE1 in Hes1 oscillations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 1155-1170.	1.6	83
28	Occurrence of periodic oscillations in the differential blood counts of congenital, idiopathic, and cyclical neutropenic patients before and during treatment with G-CSF. Experimental Hematology, 1999, 27, 401-409.	0.2	81
29	Sufficient conditions for stability of linear differential equations with distributed delay. Discrete and Continuous Dynamical Systems - Series B, 2001, 1, 233-256.	0.5	81
30	Global stability in a delayed partial differential equation describing cellular replication. Journal of Mathematical Biology, 1994, 33, 89-109.	0.8	80
31	Dynamics and bistability in a reduced model of thelacoperon. Chaos, 2004, 14, 279-292.	1.0	80
32	The dynamics of recurrent inhibition. Journal of Mathematical Biology, 1984, 19, 211-225.	0.8	77
33	Globally asymptotic properties of proliferating cell populations. Journal of Mathematical Biology, 1984, 19, 43-62.	0.8	76
34	Complex dynamics and bifurcations in neurology. Journal of Theoretical Biology, 1989, 138, 129-147.	0.8	76
35	Long Period Oscillations in aG0Model of Hematopoietic Stem Cells. SIAM Journal on Applied Dynamical Systems, 2005, 4, 312-332.	0.7	76
36	Analysis of Cell Kinetics Using a Cell Division Marker: Mathematical Modeling of Experimental Data. Biophysical Journal, 2003, 84, 3414-3424.	0.2	74

#	Article	IF	CITATIONS
37	Cyclical Neutropenia and the Peripheral Control of White Blood Cell Production. Journal of Theoretical Biology, 1998, 192, 167-181.	0.8	73
38	Periodic auto-immune hemolytic anemia: An induced dynamical disease. The Bulletin of Mathematical Biophysics, 1979, 41, 829-834.	0.5	72
39	Mackey-Glass equation. Scholarpedia Journal, 2010, 5, 6908.	0.3	69
40	Unstable dynamics of a periodically driven oscillator in the presence of noise. Journal of Theoretical Biology, 1980, 86, 455-475.	0.8	66
41	Stochastic Differential Delay Equation, Moment Stability, and Application to Hematopoietic Stem Cell Regulation System. SIAM Journal on Applied Mathematics, 2007, 67, 387-407.	0.8	65
42	A Mathematical Model of Granulopoiesis Incorporating the Negative Feedback Dynamics and Kinetics of G-CSF/Neutrophil Binding and Internalization. Bulletin of Mathematical Biology, 2016, 78, 2304-2357.	0.9	64
43	Modeling Complex Neutrophil Dynamics in the Grey Collie. Journal of Theoretical Biology, 2000, 204, 505-519.	0.8	63
44	Organelle formation from pinocytotic elements in neuntes of cultured sympathetic ganglia. Journal of Neurocytology, 1972, 1, 311-340.	1.6	60
45	Regulation of Platelet Production: The Normal Response to Perturbation and Cyclical Platelet Disease. Journal of Theoretical Biology, 2000, 206, 585-603.	0.8	60
46	Quantitative approaches to the study of bistability in the <i>lac</i> operon of <i>Escherichia coli</i> . Journal of the Royal Society Interface, 2008, 5, S29-39.	1.5	60
47	Resonance in Periodic Chemotherapy: A Case Study of Acute Myelogenous Leukemia. Journal of Theoretical Biology, 2001, 209, 113-130.	0.8	59
48	Timeâ $€$ ™s Arrow: The Origins of Thermodynamic Behavior. , 1992, , .		59
49	Dynamic Behavior of Stochastic Gene Expression Models in the Presence of Bursting. SIAM Journal on Applied Mathematics, 2013, 73, 1830-1852.	0.8	54
50	Mathematical model for G-CSF administration after chemotherapy. Journal of Theoretical Biology, 2009, 257, 27-44.	0.8	51
51	Minimizing therapeutically induced anemia. Journal of Mathematical Biology, 1981, 13, 149-158.	0.8	50
52	Relaxation Oscillations in a Class of Delay Differential Equations. SIAM Journal on Applied Mathematics, 2002, 63, 299-323.	0.8	50
53	Bifurcations in a white-blood-cell production model. Comptes Rendus - Biologies, 2004, 327, 201-210.	0.1	49
54	Cost-effective G-CSF therapy strategies for cyclical neutropenia: Mathematical modelling based hypotheses. Journal of Theoretical Biology, 2006, 238, 754-763.	0.8	48

#	Article	IF	CITATIONS
55	Deterministic Brownian motion: The effects of perturbing a dynamical system by a chaotic semi-dynamical system. Physics Reports, 2006, 422, 167-222.	10.3	45
56	A new criterion for the global stability of simultaneous cell replication and maturation processes. Journal of Mathematical Biology, 1999, 38, 195-219.	0.8	44
57	Hematopoietic dynamics in grey collies. Experimental Hematology, 1999, 27, 1139-1148.	0.2	42
58	Molecular distributions in gene regulatory dynamics. Journal of Theoretical Biology, 2011, 274, 84-96.	0.8	42
59	Could dark energy be measured in the lab?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 605, 295-300.	1.5	41
60	The segmentation clock in mice: Interaction between the Wnt and Notch signalling pathways. Journal of Theoretical Biology, 2007, 248, 37-47.	0.8	39
61	Periodic Oscillations of Blood Cell Populations in Chronic Myelogenous Leukemia. SIAM Journal on Mathematical Analysis, 2006, 38, 166-187.	0.9	38
62	Universality classes for asymptotic behavior of relaxation processes in systems with dynamical disorder: Dynamical generalizations of stretched exponential. Journal of Mathematical Physics, 1996, 37, 2279-2306.	0.5	37
63	Multistability in an age-structured model of hematopoiesis: Cyclical neutropenia. Journal of Theoretical Biology, 2011, 270, 143-153.	0.8	37
64	Neutrophil dynamics during concurrent chemotherapy and G-CSF administration: Mathematical modelling guides dose optimisation to minimise neutropenia. Journal of Theoretical Biology, 2015, 385, 77-89.	0.8	37
65	Understanding cyclical thrombocytopenia: A mathematical modeling approach. Journal of Theoretical Biology, 2008, 251, 297-316.	0.8	35
66	Neutropenia in Barth syndrome: characteristics, risks, and management. Current Opinion in Hematology, 2019, 26, 6-15.	1.2	35
67	A Model for the Regulation of Mammalian Platelet Production. Annals of the New York Academy of Sciences, 1987, 504, 280-282.	1.8	34
68	Generating functional approach to multichannel parallel relaxation with application to the problem of direct energy transfer in fractal systems with dynamic disorder. Journal of Mathematical Physics, 1995, 36, 1834-1853.	0.5	34
69	The rate of apoptosis in post mitotic neutrophil precursors of normal and neutropenic humans. Cell Proliferation, 2003, 36, 27-34.	2.4	34
70	Neutrophil dynamics after chemotherapy and G-CSF: The role of pharmacokinetics in shaping the response. Journal of Theoretical Biology, 2012, 315, 97-109.	0.8	34
71	Cell division and the stability of cellular populations. Journal of Mathematical Biology, 1999, 38, 241-261.	0.8	32
72	A Proposed Mechanism for the Interaction of the Segmentation Clock and the Determination Front in Somitogenesis. PLoS ONE, 2008, 3, e1561.	1.1	32

#	Article	IF	CITATIONS
73	Noise and statistical periodicity. Physica D: Nonlinear Phenomena, 1987, 28, 143-154.	1.3	31
74	Noise-induced global asymptotic stability. Journal of Statistical Physics, 1990, 60, 735-751.	0.5	31
75	Modeling operon dynamics: the tryptophan and lactose operons as paradigms. Comptes Rendus - Biologies, 2004, 327, 211-224.	0.1	31
76	Neutrophil dynamics in response to chemotherapy and G-CSF. Journal of Theoretical Biology, 2012, 293, 111-120.	0.8	31
77	Oscillatory modes in a nonlinear second-order differential equation with delay. Journal of Dynamics and Differential Equations, 1990, 2, 423-449.	1.0	30
78	Understanding, Treating and Avoiding Hematological Disease: Better Medicine Through Mathematics?. Bulletin of Mathematical Biology, 2015, 77, 739-757.	0.9	30
79	Dynamic Haematological Disorders of Stem Cell Origin. , 1979, , 373-409.		29
80	Dynamics and density evolution in piecewise deterministic growth processes. Annales Polonici Mathematici, 2008, 94, 111-129.	0.2	28
81	Noise and stability in differential delay equations. Journal of Dynamics and Differential Equations, 1994, 6, 395-426.	1.0	27
82	The Kinetics of Mechanically Coupled Myosins Exhibit Group Size-Dependent Regimes. Biophysical Journal, 2013, 105, 1466-1474.	0.2	27
83	Normal and pathological dynamics of platelets in humans. Journal of Mathematical Biology, 2017, 75, 1411-1462.	0.8	27
84	Statistical cycling in coupled map lattices. Physical Review E, 1994, 50, 843-856.	0.8	26
85	Propagating fronts, chaos and multistability in a cell replication model. Chaos, 1996, 6, 477-492.	1.0	26
86	The statistical dynamics of recurrent biological events. Journal of Mathematical Biology, 1992, 30, 775.	0.8	25
87	Nonequilibrium fluctuation–dissipation relations for independent random rate processes with dynamical disorder. Journal of Mathematical Physics, 1996, 37, 803.	0.5	25
88	Cyclical Thrombocytopenia: Characterization by Spectral Analysis and a Review. Journal of Theoretical Medicine, 2000, 2, 81-91.	0.5	25
89	Bifurcation and Bistability in a Model of Hematopoietic Regulation. SIAM Journal on Applied Dynamical Systems, 2007, 6, 378-394.	0.7	24
90	Adiabatic reduction of a model of stochastic gene expression with jump Markov process. Journal of Mathematical Biology, 2014, 68, 1051-1070.	0.8	24

#	Article	IF	CITATIONS
91	Generating functional approach to space- and time-dependent colored noise. Physical Review E, 1994, 50, 798-821.	0.8	23
92	G-CSF treatment of canine cyclical neutropenia: A comprehensive mathematical model. Experimental Hematology, 2007, 35, 898-907.	0.2	23
93	Stochastic perturbation of dynamical systems: The weak convergence of measures. Journal of Mathematical Analysis and Applications, 1989, 138, 232-248.	0.5	22
94	High frequency spikes in long period blood cell oscillations. Journal of Mathematical Biology, 2006, 53, 499-519.	0.8	22
95	Deterministic Brownian motion generated from differential delay equations. Physical Review E, 2011, 84, 041105.	0.8	22
96	Measurability of vacuum fluctuations and dark energy. Physica A: Statistical Mechanics and Its Applications, 2007, 379, 101-110.	1.2	21
97	Bifurcations and traveling waves in a delayed partial differential equation. Chaos, 1992, 2, 231-244.	1.0	20
98	Phase transitions in networks of chaotic elements with short and long range interactions. Physica D: Nonlinear Phenomena, 1995, 81, 177-203.	1.3	20
99	Propagation of population pulses and fronts in a cell replication problem: Non-locality and dependence on the initial function. Physica D: Nonlinear Phenomena, 1995, 86, 373-395.	1.3	20
100	Recurrent Inhibitory Dynamics: The Role of State-Dependent Distributions of Conduction Delay Times. Journal of Theoretical Biology, 2002, 216, 31-50.	0.8	20
101	Asymptotic periodicity and banded chaos. Physica D: Nonlinear Phenomena, 1991, 53, 295-318.	1.3	19
102	Coupled map lattices as models of deterministic and stochastic differential delay equations. Physical Review E, 1995, 52, 115-128.	0.8	19
103	Neural ensemble coding and statistical periodicity: Speculations on the operation of the mind's eye. Journal of Physiology (Paris), 2000, 94, 489-503.	2.1	18
104	Dynamic behavior in mathematical models of the tryptophan operon. Chaos, 2001, 11, 261.	1.0	18
105	The limiting dynamics of a bistable molecular switch with and without noise. Journal of Mathematical Biology, 2016, 73, 367-395.	0.8	17
106	The extinction of slowly evolving dynamical systems. Journal of Mathematical Biology, 1980, 10, 333-345.	0.8	16
107	Dynamic behaviour of the B12riboswitch. Physical Biology, 2005, 2, 29-35.	0.8	16
108	ELECTROMAGNETIC DARK ENERGY. International Journal of Modern Physics D, 2008, 17, 71-80.	0.9	16

#	Article	IF	CITATIONS
109	The utility of simple mathematical models in understanding gene regulatory dynamics. In Silico Biology, 2015, 12, 23-53.	0.4	16
110	What Has Mathematics Done for Biology?. Bulletin of Mathematical Biology, 2015, 77, 735-738.	0.9	16
111	Stability properties of proliferatively coupled cell replication models. Acta Biotheoretica, 1991, 39, 1-14.	0.7	15
112	Coupling induced statistical cycling in two diffusively coupled maps. Physica D: Nonlinear Phenomena, 1994, 72, 324-342.	1.3	15
113	Simple Mathematical Models of Gene Regulatory Dynamics. Lecture Notes on Mathematical Modelling in the Life Sciences, 2016, , .	0.1	15
114	Asymptotic stability of densities in coupled map lattices. Physica D: Nonlinear Phenomena, 1995, 80, 1-17.	1.3	14
115	Evolution of probability densities in stochastic coupled map lattices. Physical Review E, 1995, 52, 1403-1417.	0.8	14
116	The timing of cyclic cytotoxic chemotherapy can worsen neutropenia and neutrophilia. British Journal of Clinical Pharmacology, 2021, 87, 687-693.	1.1	14
117	Noise-induced asymptotic periodicity in a piecewise linear map. Journal of Statistical Physics, 1991, 63, 585-612.	0.5	13
118	A Hopf-like equation and perturbation theory for differential delay equations. Journal of Statistical Physics, 1992, 69, 1025-1046.	0.5	12
119	Transitions and kinematics of reaction-convection fronts in a cell population model. Physica D: Nonlinear Phenomena, 1995, 80, 120-139.	1.3	12
120	Molecular, metabolic, and genetic control: An introduction. Chaos, 2001, 11, 81.	1.0	12
121	Origins of oscillation patterns in cyclical thrombocytopenia. Journal of Theoretical Biology, 2019, 462, 432-445.	0.8	12
122	Periodic hematological disorders: Quintessential examples of dynamical diseases. Chaos, 2020, 30, 063123.	1.0	12
123	Passage over a random energy barrier with dynamical disorder. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 203, 292-299.	0.9	11
124	Stochastic renormalization-group approach to space-dependent supercritical branched chain processes. Physical Review E, 1995, 51, 3104-3119.	0.8	11
125	Mathematical model of GAL regulon dynamics in Saccharomyces cerevisiae. Journal of Theoretical Biology, 2012, 293, 219-235.	0.8	11
126	Cyclic thrombocytopenia with statistically significant neutrophil oscillations. Clinical Case Reports (discontinued), 2018, 6, 1347-1352.	0.2	11

#	Article	IF	CITATIONS
127	Asymptotic Similarity and Malthusian Growth in Autonomous and Nonautonomous Populations. Journal of Mathematical Analysis and Applications, 1994, 187, 548-566.	0.5	10
128	Understanding and Treating Cytopenia Through Mathematical Modeling. Advances in Experimental Medicine and Biology, 2014, 844, 279-302.	0.8	10
129	Observations on the Pathophysiology and Mechanisms for Cyclic Neutropenia. Mathematical Modelling of Natural Phenomena, 2006, 1, 45-69.	0.9	9
130	Noise and conditional entropy evolution. Physica A: Statistical Mechanics and Its Applications, 2006, 365, 360-382.	1.2	9
131	Molecular Mechanical Differences between Isoforms of Contractile Actin in the Presence of Isoforms of Smooth Muscle Tropomyosin. PLoS Computational Biology, 2013, 9, e1003273.	1.5	9
132	Cyclical Neutropenia and Other Periodic Hematological Disorders: A Review of Mechanisms and Mathematical Models. Blood, 1998, 92, 2629-2640.	0.6	9
133	Temporal Behavior of the Conditional and Gibbs' Entropies. Journal of Statistical Physics, 2006, 124, 1443-1470.	0.5	8
134	Dynamic stability versus thermodynamic performance in a simple model for a Brownian motor. Physical Review E, 2008, 78, 061122.	0.8	8
135	Characterizing Chemotherapy-Induced Neutropenia and Monocytopenia Through Mathematical Modelling. Bulletin of Mathematical Biology, 2020, 82, 104.	0.9	8
136	A Mitotic Oscillator with a Strange Attractor and Distributions of Cell Cycle Times. Lecture Notes in Biomathematics, 1986, , 34-45.	0.3	8
137	Central limit theorem behavior in the skew tent map. Chaos, Solitons and Fractals, 2008, 38, 789-805.	2.5	7
138	Phosphate and ADP Differently Inhibit Coordinated Smooth Muscle Myosin Groups. Biophysical Journal, 2015, 108, 622-631.	0.2	7
139	A Deterministic Cell Cycle Model with Transition Probability-Like Behaviour. Springer Series in Synergetics, 1985, , 315-320.	0.2	7
140	Admittance properties of electrodiffusion membrane models. Mathematical Biosciences, 1975, 25, 67-80.	0.9	6
141	Long memory and scaling for multiplicative stochastic processes with application to the study of population oscillations. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 208, 99-107.	0.9	6
142	Oscillations in a Maturation Model of Blood Cell Production. SIAM Journal on Applied Mathematics, 2006, 66, 2027-2048.	0.8	6
143	Small delay, big waves: a minimal delayed negative feedback model captures Escherichia coli single cell SOS kinetics. Molecular BioSystems, 2011, 7, 2599-2607.	2.9	6
144	An upper bound for the half-removal time of neutrophils from circulation. Blood, 2016, 128, 1989-1991.	0.6	6

#	Article	IF	CITATIONS
145	Understanding Normal and Pathological Hematopoietic Stem Cell Biology Using Mathematical Modelling. Current Stem Cell Reports, 2021, 7, 109-120.	0.7	6
146	Operon dynamics with state dependent transcription and/or translation delays. Journal of Mathematical Biology, 2022, 84, 2.	0.8	6
147	Maximum information entropy approach to non-markovian random jump processes with long memory: application to surprisal analysis in molecular dynamics. Physica A: Statistical Mechanics and Its Applications, 1995, 215, 339-360.	1.2	4
148	Response of an oscillatory differential delay equation to a single stimulus. Journal of Mathematical Biology, 2017, 74, 1139-1196.	0.8	4
149	Response of an oscillatory differential delay equation to a periodic stimulus. Journal of Mathematical Biology, 2019, 78, 1637-1679.	0.8	4
150	Ensemble and trajectory statistics in a nonlinear partial differential equation. Journal of Statistical Physics, 1993, 70, 281-295.	0.5	3
151	Jump clustering, Shlesinger-Hughes stochastic renormalization, and interacting Lévy flights. Physical Review E, 1995, 51, 3120-3125.	0.8	3
152	Evolution towards ergodic behavior of stationary fractal random processes with memory: application to the study of long-range correlations of nucleotide sequences in DNA. Physica A: Statistical Mechanics and Its Applications, 1996, 229, 312-342.	1.2	3
153	ZEROPOINT FLUCTUATIONS AND DARK ENERGY IN JOSEPHSON JUNCTIONS. Fluctuation and Noise Letters, 2007, 07, C27-C35.	1.0	3
154	Mathematical model of galactose regulation and metabolic consumption in yeast. Journal of Theoretical Biology, 2016, 407, 238-258.	0.8	3
155	Asymptotic (statistical) periodicity in two-dimensional maps. Discrete and Continuous Dynamical Systems - Series B, 2022, 27, 4285.	0.5	3
156	How can we describe density evolution under delayed dynamics?. Chaos, 2021, 31, 043114.	1.0	3
157	Dependence on initial conditions in nonlocal PDE's and hereditary dynamical systems. , 1996, , 3125-3136.		3
158	Self-similar potentials in random media, fractal evolutionary landscapes and Kimura's neutral theory of molecular evolution. Physica A: Statistical Mechanics and Its Applications, 1996, 229, 343-364.	1.2	2
159	FRACTAL TIME, LONG-RANGE CORRELATIONS AND STRETCHED OR COMPRESSED EXPONENTIAL SURVIVAL STATISTICS. Fractals, 1996, 04, 59-72.	1.8	2
160	Random Numbers from a Delay Equation. Journal of Nonlinear Science, 2016, 26, 1311-1327.	1.0	2
161	The Lysis-Lysogeny Switch. Lecture Notes on Mathematical Modelling in the Life Sciences, 2016, , 99-114.	0.1	2
162	Statistical fractals with cutoffs, Shlesinger-Hughes renormalization, and the onset of an epidemic. Physical Review E, 1996, 53, 1382-1398.	0.8	1

#	Article	IF	CITATIONS
163	Fluctuating Poissonian clocks, fractal random processes and dynamical Porter-Thomas distributions: Applications to evolutionary molecular biology, enhanced diffusion and dynamical relaxation. Physica Scripta, 1996, 54, 581-593.	1.2	1
164	Generic Deterministic Models of Prokaryotic Gene Regulation. Lecture Notes on Mathematical Modelling in the Life Sciences, 2016, , 3-6.	0.1	1
165	The combined effects of Feller diffusion and transcriptional/translational bursting in simple gene networks. Journal of Mathematical Analysis and Applications, 2019, 470, 931-953.	0.5	1
166	Density Evolution Under Delayed Dynamics. Fields Institute Monographs, 2020, , .	0.4	1
167	Randomly switching evolution equations. Nonlinear Analysis: Hybrid Systems, 2021, 39, 100948.	2.1	1
168	Andrew Fielding Huxley (1917-2012). Notices of the American Mathematical Society, 2013, 60, 576.	0.1	1
169	The Mathematical Legacy of Andrzej Lasota. , 2012, 48, .	0.0	1
170	The Tryptophan Operon. Lecture Notes on Mathematical Modelling in the Life Sciences, 2016, , 87-97.	0.1	1
171	Erratum to "phase transitions in networks of chaotic elements with short and long range interactions―[Physica D 81 (1995) 177–203]. Physica D: Nonlinear Phenomena, 1995, 83, 499-500.	1.3	0
172	Crossover from geometrical to stochastic fractal statistics for translationally invariant random distributions of independent particles in n-dimensional Euclidean space. Chaos, Solitons and Fractals, 1996, 7, 337-348.	2.5	0
173	Dynamic spatial pattern formation in the sea urchin embryo. Journal of Mathematical Biology, 2014, 68, 581-608.	0.8	0
174	Barth Syndrome: An Under-Recognized Cause of Chronic Neutropenia. Blood, 2015, 126, 2195-2195.	0.6	0
175	Application of Spectral Density/Periodogram Analysis to Serial Neutrophil Counts to Diagnose Cyclic Neutropenia. Blood, 2015, 126, 4608-4608.	0.6	0
176	Noise Effects in Gene Regulation: Intrinsic Versus Extrinsic. Lecture Notes on Mathematical Modelling in the Life Sciences, 2016, , 49-69.	0.1	0
177	Master Equation Modeling Approaches. Lecture Notes on Mathematical Modelling in the Life Sciences, 2016, , 31-47.	0.1	0
178	General Dynamic Considerations. Lecture Notes on Mathematical Modelling in the Life Sciences, 2016, , 7-27.	0.1	0
179	The Lactose Operon. Lecture Notes on Mathematical Modelling in the Life Sciences, 2016, , 73-85.	0.1	0
180	The Hopf Functional Approach. Fields Institute Monographs, 2020, , 45-78.	0.4	0

#	Article	IF	CITATIONS
181	Density Evolution in Systems with Finite-Dimensional Dynamics. Fields Institute Monographs, 2020, , 9-16.	0.4	0
182	Turning a Differential Delay Equation into a High-Dimensional Map. Fields Institute Monographs, 2020, , 99-114.	0.4	0
183	Approximate "Liouville-Like―Equation and Invariant Densities for Delay Differential Equations. Fields Institute Monographs, 2020, , 115-130.	0.4	0