Rohitash Chandra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/647410/publications.pdf

Version: 2024-02-01

96 papers 1,789

304368

22

h-index

315357 38 g-index

97 all docs

97 docs citations

97 times ranked 1062 citing authors

#	Article	IF	CITATIONS
1	Distributed Bayesian optimisation framework for deep neuroevolution. Neurocomputing, 2022, 470, 51-65.	3.5	13
2	A review of machine learning in processing remote sensing data for mineral exploration. Remote Sensing of Environment, 2022, 268, 112750.	4.6	101
3	Deep learning via LSTM models for COVID-19 infection forecasting in India. PLoS ONE, 2022, 17, e0262708.	1.1	88
4	A Comparative Study of Convolutional Neural Networks and Conventional Machine Learning Models for Lithological Mapping Using Remote Sensing Data. Remote Sensing, 2022, 14, 819.	1.8	28
5	Semantic and Sentiment Analysis of Selected Bhagavad Gita Translations Using BERT-Based Language Framework. IEEE Access, 2022, 10, 21291-21315.	2.6	16
6	SMOTified-GAN for Class Imbalanced Pattern Classification Problems. IEEE Access, 2022, 10, 30655-30665.	2.6	32
7	Revisiting Bayesian Autoencoders With MCMC. IEEE Access, 2022, 10, 40482-40495.	2.6	9
8	Spatio temporal hydrological extreme forecasting framework using LSTM deep learning model. Stochastic Environmental Research and Risk Assessment, 2022, 36, 3467-3485.	1.9	13
9	Deep learning for predicting respiratory rate from biosignals. Computers in Biology and Medicine, 2022, 144, 105338.	3.9	29
10	Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models. Geoscience Frontiers, 2021, 12, 479-493.	4.3	27
11	Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction. IEEE Access, 2021, 9, 83105-83123.	2.6	83
12	Biden vs Trump: Modeling US General Elections Using BERT Language Model. IEEE Access, 2021, 9, 128494-128505.	2.6	13
13	Bayesian Graph Convolutional Neural Networks via Tempered MCMC. IEEE Access, 2021, 9, 130353-130365.	2.6	13
14	Precipitation reconstruction from climate-sensitive lithologies using Bayesian machine learning. Environmental Modelling and Software, 2021, 139, 105002.	1.9	16
15	Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic. PLoS ONE, 2021, 16, e0253217.	1.1	22
16	COVID-19 sentiment analysis via deep learning during the rise of novel cases. PLoS ONE, 2021, 16, e0255615.	1.1	74
17	Predicting the emplacement of Cordilleran porphyry copper systems using a spatio-temporal machine learning model. Ore Geology Reviews, 2021, 137, 104300.	1.1	8
18	Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data. International Journal of Remote Sensing, 2020, 41, 1760-1787.	1.3	32

#	Article	IF	Citations
19	Bayesian neural multi-source transfer learning. Neurocomputing, 2020, 378, 54-64.	3.5	19
20	3DWofE: An open-source software package for three-dimensional weights of evidence modeling. Software Impacts, 2020, 6, 100039.	0.8	0
21	Three-dimensional weights of evidence modelling of a deep-seated porphyry Cu deposit. Geochemistry: Exploration, Environment, Analysis, 2020, 20, 480-495.	0.5	7
22	Surrogate-assisted parallel tempering for Bayesian neural learning. Engineering Applications of Artificial Intelligence, 2020, 94, 103700.	4.3	5
23	Bayesreef: A Bayesian inference framework for modelling reef growth in response to environmental change and biological dynamics. Environmental Modelling and Software, 2020, 125, 104610.	1.9	12
24	Integration of Selective Dimensionality Reduction Techniques for Mineral Exploration Using ASTER Satellite Data. Remote Sensing, 2020, 12, 1261.	1.8	45
25	Surrogate-assisted Bayesian inversion for landscape and basin evolution models. Geoscientific Model Development, 2020, 13, 2959-2979.	1.3	8
26	Efficiency and robustness in Monte Carlo sampling for 3-D geophysical inversions with Obsidian v0.1.2: setting up for success. Geoscientific Model Development, 2019, 12, 2941-2960.	1.3	28
27	Probabilistic modelling of sedimentary basin evolution using Bayeslands. ASEG Extended Abstracts, 2019, 2019, 1-5.	0.1	0
28	Multicore Parallel Tempering Bayeslands for Basin and Landscape Evolution. Geochemistry, Geophysics, Geosystems, 2019, 20, 5082-5104.	1.0	11
29	Bayeslands: A Bayesian inference approach for parameter uncertainty quantification in Badlands. Computers and Geosciences, 2019, 131, 89-101.	2.0	17
30	Langevin-gradient parallel tempering for Bayesian neural learning. Neurocomputing, 2019, 359, 315-326.	3.5	31
31	Modeling geochemical anomalies of stream sediment data through a weighted drainage catchment basin method for detecting porphyry Cu-Au mineralization. Journal of Geochemical Exploration, 2019, 204, 12-32.	1.5	12
32	Multi-step-ahead Cyclone Intensity Prediction with Bayesian Neural Networks. Lecture Notes in Computer Science, 2019, , 282-295.	1.0	1
33	Evolutionary Multi-task Learning for Modular Knowledge Representation in Neural Networks. Neural Processing Letters, 2018, 47, 993-1009.	2.0	35
34	Information Collection Strategies In Memetic Cooperative Neuroevolution For Time Series Prediction. , 2018, , .		1
35	Surface Process Models of The Lake Eyre Basin Using Badlands Software. ASEG Extended Abstracts, 2018, 2018, 1-1.	0.1	0
36	Multi-Task Modular Backpropagation For Dynamic Time Series Prediction. , 2018, , .		2

#	Article	IF	Citations
37	Coevolutionary multi-task learning for feature-based modular pattern classification. Neurocomputing, 2018, 319, 164-175.	3.5	10
38	Cyclone Track Prediction with Matrix Neural Networks. , 2018, , .		12
39	Bayesian Multi-task Learning for Dynamic Time Series Prediction. , 2018, , .		2
40	Co-evolutionary multi-task learning for dynamic time series prediction. Applied Soft Computing Journal, 2018, 70, 576-589.	4.1	43
41	Co-evolutionary multi-task learning with predictive recurrence for multi-step chaotic time series prediction. Neurocomputing, 2017, 243, 21-34.	3.5	68
42	Face detection and recognition in an unconstrained environment for mobile visual assistive system. Applied Soft Computing Journal, 2017, 53, 168-180.	4.1	18
43	Bayesian Neural Learning via Langevin Dynamics for Chaotic Time Series Prediction. Lecture Notes in Computer Science, 2017, , 564-573.	1.0	4
44	Towards an Affective Computational Model forÂMachine Consciousness. Lecture Notes in Computer Science, 2017, , 897-907.	1.0	3
45	Dynamic Cyclone Wind-Intensity Prediction Using Co-Evolutionary Multi-task Learning. Lecture Notes in Computer Science, 2017, , 618-627.	1.0	5
46	Co-evolutionary Multi-task Learning for Modular Pattern Classification. Lecture Notes in Computer Science, 2017, , 692-701.	1.0	3
47	Multi-task Modular Backpropagation for Feature-Based Pattern Classification. Lecture Notes in Computer Science, 2017, , 558-566.	1.0	1
48	Cooperative neuro-evolutionary recurrent neural networks for solar power prediction., 2016,,.		5
49	Contribution based multi-island competitive cooperative coevolution. , 2016, , .		0
50	Multi-step-ahead chaotic time series prediction using coevolutionary recurrent neural networks. , 2016, , .		10
51	On the relationship of degree of separability with depth of evolution in decomposition for cooperative coevolution. , 2016, , .		2
52	The forward kinematics of the 6-6 parallel manipulator using an evolutionary algorithm based on generalized generation gap with parent-centric crossover. Robotica, 2016, 34, 1-22.	1.3	19
53	Evaluation of co-evolutionary neural network architectures for time series prediction with mobile application in finance. Applied Soft Computing Journal, 2016, 49, 462-473.	4.1	42
54	Evolutionary Multi-task Learning for Modular Training of Feedforward Neural Networks. Lecture Notes in Computer Science, 2016, , 37-46.	1.0	26

#	Article	IF	CITATIONS
55	Unconstrained Face Detection from a Mobile Source Using Convolutional Neural Networks. Lecture Notes in Computer Science, 2016, , 567-576.	1.0	2
56	Identification of minimal timespan problem for recurrent neural networks with application to cyclone wind-intensity prediction. , 2016, , .		4
57	An architecture for encoding two-dimensional cyclone track prediction problem in coevolutionary recurrent neural networks. , 2016, , .		4
58	Coevolutionary Feature Selection and Reconstruction in Neuro-Evolution for Time Series Prediction. Lecture Notes in Computer Science, 2016, , 285-297.	1.0	1
59	Memetic Cooperative Neuro-Evolution for Chaotic Time Series Prediction. Lecture Notes in Computer Science, 2016, , 299-308.	1.0	2
60	Chaotic Feature Selection and Reconstruction in Time Series Prediction. Lecture Notes in Computer Science, 2016, , 3-11.	1.0	0
61	Reverse Neuron Level Decomposition for Cooperative Neuro-Evolution of Feedforward Networks for Time Series Prediction. Lecture Notes in Computer Science, 2016, , 171-182.	1.0	1
62	Competitive Island Cooperative Neuro-evolution of Feedforward Networks for Time Series Prediction. Lecture Notes in Computer Science, 2016, , 160-170.	1.0	0
63	Global–local population memetic algorithm for solving the forward kinematics of parallel manipulators. Connection Science, 2015, 27, 22-39.	1.8	6
64	Competitive two-island cooperative co-evolution for training feedforward neural networks for pattern classification problems. , 2015, , .		3
65	Application of cooperative neuro-evolution of Elman recurrent networks for a two-dimensional cyclone track prediction for the south pacific region. , 2015, , .		5
66	Cooperative neuro-evolution of Elman recurrent networks for tropical cyclone wind-intensity prediction in the South Pacific region. , 2015, , .		4
67	Competitive two-island cooperative coevolution for real parameter global optimisation. , 2015, , .		8
68	Multi-objective cooperative neuro-evolution of recurrent neural networks for time series prediction. , $2015, \dots$		3
69	Competition and Collaboration in Cooperative Coevolution of Elman Recurrent Neural Networks for Time-Series Prediction. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26, 3123-3136.	7.2	132
70	Enhancing Competitive Island Cooperative Neuro-Evolution Through Backpropagation for Pattern Classification. Lecture Notes in Computer Science, 2015, , 293-301.	1.0	1
71	Multi-Island Competitive Cooperative Coevolution for Real Parameter Global Optimization. Lecture Notes in Computer Science, 2015, , 127-136.	1.0	4
72	Scaling up Multi-island Competitive Cooperative Coevolution for Real Parameter Global Optimisation. Lecture Notes in Computer Science, 2015, , 34-48.	1.0	2

#	Article	IF	CITATIONS
73	Neuron-Synapse Level Problem Decomposition Method for Cooperative Neuro-Evolution of Feedforward Networks for Time Series Prediction. Lecture Notes in Computer Science, 2015, , 90-100.	1.0	4
74	Competitive Island-Based Cooperative Coevolution for Efficient Optimization of Large-Scale Fully-Separable Continuous Functions. Lecture Notes in Computer Science, 2015, , 137-147.	1.0	4
75	Coevolutionary Recurrent Neural Networks for Prediction of Rapid Intensification in Wind Intensity of Tropical Cyclones in the South Pacific Region. Lecture Notes in Computer Science, 2015, , 43-52.	1.0	4
76	Web and mobile based tourist travel guide system for fiji's tourism industry. , 2014, , .		3
77	Cooperative coevolution of feed forward neural networks for financial time series problem. , 2014, , .		13
78	Multi-objective cooperative coevolution of neural networks for time series prediction., 2014,,.		12
79	Competitive two-island cooperative coevolution for training Elman recurrent networks for time series prediction. , $2014, , .$		20
80	Memetic cooperative coevolution of Elman recurrent neural networks. Soft Computing, 2014, 18, 1549-1559.	2.1	8
81	Adaptive problem decomposition in cooperative coevolution of recurrent networks for time series prediction., 2013,,.		15
82	Crossover-based local search in cooperative co-evolutionary feedforward neural networks. Applied Soft Computing Journal, 2012, 12, 2924-2932.	4.1	24
83	Adapting modularity during learning in cooperative co-evolutionary recurrent neural networks. Soft Computing, 2012, 16, 1009-1020.	2.1	15
84	Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing, 2012, 86, 116-123.	3.5	207
85	On the issue of separability for problem decomposition in cooperative neuro-evolution. Neurocomputing, 2012, 87, 33-40.	3.5	41
86	Application of Cooperative Convolution Optimization for 13C Metabolic Flux Analysis: Simulation of Isotopic Labeling Patterns Based on Tandem Mass Spectrometry Measurements. Lecture Notes in Computer Science, 2012, , 178-187.	1.0	1
87	A memetic framework for cooperative coevolution of recurrent neural networks., 2011,,.		4
88	Encoding subcomponents in cooperative co-evolutionary recurrent neural networks. Neurocomputing, 2011, 74, 3223-3234.	3.5	31
89	On solving the forward kinematics of 3RPR planar parallel manipulator using hybrid metaheuristics. Applied Mathematics and Computation, 2011, 217, 8997-9008.	1.4	17
90	Modularity adaptation in cooperative coevolution of feedforward neural networks., 2011,,.		8

#	Article	IF	CITATIONS
91	On Solving the Forward Kinematics of the 6-6 General Parallel Manipulator with an Efficient Evolutionary Algorithm. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2010, , 117-124.	0.3	6
92	Forward kinematics of the 6-6 general parallel manipulator using Real Coded Genetic Algorithms. , 2009, , .		18
93	Forward kinematics of the 3RPR planar parallel manipulators using real coded genetic algorithms. , 2009, , .		3
94	Solving the forward kinematics of the 3RPR planar parallel manipulator using a hybrid meta-heuristic paradigm. , 2009, , .		5
95	A meta-heuristic paradigm for solving the forward kinematics of $6\&\#x2013$;6 general parallel manipulator., 2009,,.		4
96	Renosterveld Conservation in South Africa: A Case Study for Handling Uncertainty in Knowledge-Based Neural Networks for Environmental Management. Journal of Environmental Informatics, 2009, 13, 56-65.	6.0	2