F Gisou Van Der Goot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6473633/publications.pdf Version: 2024-02-01

	13827	11899
19,440	67	134
citations	h-index	g-index
214	214	27694
docs citations	times ranked	citing authors
	19,440 citations 214 docs citations	19,44067citationsh-index214214docs citationstimes ranked

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Targeting STING with covalent small-molecule inhibitors. Nature, 2018, 559, 269-273.	13.7	601
3	Pore-forming toxins: ancient, but never really out of fashion. Nature Reviews Microbiology, 2016, 14, 77-92.	13.6	600
4	Caspase-1 Activation of Lipid Metabolic Pathways in Response to Bacterial Pore-Forming Toxins Promotes Cell Survival. Cell, 2006, 126, 1135-1145.	13.5	461
5	A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A. Nature, 1991, 354, 408-410.	13.7	450
6	Anthrax toxin triggers endocytosis of its receptor via a lipid raft–mediated clathrin-dependent process. Journal of Cell Biology, 2003, 160, 321-328.	2.3	447
7	<i>Brucella abortus</i> Transits through the Autophagic Pathway and Replicates in the Endoplasmic Reticulum of Nonprofessional Phagocytes. Infection and Immunity, 1998, 66, 5711-5724.	1.0	379
8	Mechanisms of pathogen entry through the endosomal compartments. Nature Reviews Molecular Cell Biology, 2006, 7, 495-504.	16.1	324
9	Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proceedings of the United States of America, 2004, 101, 10995-11000.	3.3	312
10	Shigella Phagocytic Vacuolar Membrane Remnants Participate in the Cellular Response to Pathogen Invasion and Are Regulated by Autophagy. Cell Host and Microbe, 2009, 6, 137-149.	5.1	291
11	Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Seminars in Immunology, 2001, 13, 89-97.	2.7	235
12	Bacterial pore-forming toxins: The (w)hole story?. Cellular and Molecular Life Sciences, 2008, 65, 493-507.	2.4	235
13	Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO Journal, 2002, 21, 4449-4457.	3.5	215
14	A Pore-forming Toxin Interacts with a GPI-anchored Protein and Causes Vacuolation of the Endoplasmic Reticulum. Journal of Cell Biology, 1998, 140, 525-540.	2.3	211
15	What does <scp>S</scp> â€palmitoylation do to membrane proteins?. FEBS Journal, 2013, 280, 2766-2774.	2.2	209
16	SwissPalm: Protein Palmitoylation database. F1000Research, 2015, 4, 261.	0.8	209
17	Dynamics of Unfolded Protein Transport through an Aerolysin Pore. Journal of the American Chemical Society, 2011, 133, 2923-2931.	6.6	204
18	Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO Journal, 2002, 21, 3989-4000.	3.5	203

#	Article	IF	CITATIONS
19	Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. Journal of Cell Biology, 2004, 166, 645-651.	2.3	197
20	Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis. Journal of Cell Biology, 2006, 172, 309-320.	2.3	184
21	Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nature Chemical Biology, 2013, 9, 623-629.	3.9	183
22	Intra-endosomal membrane traffic. Trends in Cell Biology, 2006, 16, 514-521.	3.6	177
23	Activation of the Unfolded Protein Response Is Required for Defenses against Bacterial Pore-Forming Toxin In Vivo. PLoS Pathogens, 2008, 4, e1000176.	2.1	174
24	Pathogenic Pore-Forming Proteins: Function and Host Response. Cell Host and Microbe, 2012, 12, 266-275.	5.1	173
25	Hijacking Multivesicular Bodies Enables Long-Term and Exosome-Mediated Long-Distance Action of Anthrax Toxin. Cell Reports, 2013, 5, 986-996.	2.9	171
26	Regulation of the V-ATPase along the Endocytic Pathway Occurs through Reversible Subunit Association and Membrane Localization. PLoS ONE, 2008, 3, e2758.	1.1	168
27	Clustering Induces a Lateral Redistribution of α2β1 Integrin from Membrane Rafts to Caveolae and Subsequent Protein Kinase C-dependent Internalization. Molecular Biology of the Cell, 2004, 15, 625-636.	0.9	163
28	Structure and assembly of pore-forming proteins. Current Opinion in Structural Biology, 2010, 20, 241-246.	2.6	162
29	Pore formation: An ancient yet complex form of attack. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1611-1623.	1.4	161
30	Palmitoylation of membrane proteins (Review). Molecular Membrane Biology, 2009, 26, 55-66.	2.0	158
31	Membrane insertion: The strategies of toxins (Review). Molecular Membrane Biology, 1997, 14, 45-64.	2.0	153
32	The bacterial toxin toolkit. Nature Reviews Molecular Cell Biology, 2001, 2, 530-537.	16.1	152
33	Palmitoylated calnexin is a key component of the ribosome-translocon complex. EMBO Journal, 2012, 31, 1823-1835.	3.5	152
34	Plasma Membrane Microdomains Act as Concentration Platforms to Facilitate Intoxication by Aerolysin. Journal of Cell Biology, 1999, 147, 175-184.	2.3	144
35	Palmitoylation and ubiquitination regulate exit of the Wnt signaling protein LRP6 from the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5384-5389.	3.3	144
36	Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process. Nature Communications, 2016, 7, 12062.	5.8	144

#	Article	IF	CITATIONS
37	Bacterial invasion via lipid rafts. Cellular Microbiology, 2005, 7, 613-620.	1.1	143
38	Pore-forming toxins induce multiple cellular responses promoting survival. Cellular Microbiology, 2011, 13, 1026-1043.	1.1	139
39	Anthrax toxin: the long and winding road that leads to the kill. Trends in Microbiology, 2005, 13, 72-78.	3.5	138
40	Association of Helicobacter pylori Vacuolating Toxin (VacA) with Lipid Rafts. Journal of Biological Chemistry, 2002, 277, 34642-34650.	1.6	134
41	Biochemical Membrane Lipidomics during Drosophila Development. Developmental Cell, 2013, 24, 98-111.	3.1	133
42	The Pore-forming Toxin Proaerolysin Is Activated by Furin. Journal of Biological Chemistry, 1998, 273, 32656-32661.	1.6	130
43	Adventures of a pore-forming toxin at the target cell surface. Trends in Microbiology, 2000, 8, 168-172.	3.5	129
44	Late Endosomal Cholesterol Accumulation Leads to Impaired Intra-Endosomal Trafficking. PLoS ONE, 2007, 2, e851.	1.1	119
45	Membrane injury by pore-forming proteins. Current Opinion in Cell Biology, 2009, 21, 589-595.	2.6	118
46	Pore-forming toxins and cellular non-immune defenses (CNIDs). Current Opinion in Microbiology, 2007, 10, 57-61.	2.3	113
47	Extending the Aerolysin Family: From Bacteria to Vertebrates. PLoS ONE, 2011, 6, e20349.	1.1	107
48	Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum α-toxin. EMBO Journal, 2002, 21, 5047-5056.	3.5	105
49	Aerolysin - the ins and outs of a model channel-forming toxin. Molecular Microbiology, 1996, 19, 205-212.	1.2	104
50	Bacterial subversion of lipid rafts. Current Opinion in Microbiology, 2004, 7, 4-10.	2.3	103
51	Monalysin, a Novel ß-Pore-Forming Toxin from the Drosophila Pathogen Pseudomonas entomophila, Contributes to Host Intestinal Damage and Lethality. PLoS Pathogens, 2011, 7, e1002259.	2.1	101
52	Oligomerization of the channel-forming toxin aerolysin precedes insertion into lipid bilayers. Biochemistry, 1993, 32, 2636-2642.	1.2	95
53	A rivet model for channel formation by aerolysin-like pore-forming toxins. EMBO Journal, 2006, 25, 457-466.	3.5	95
54	Endocytosis of the Anthrax Toxin Is Mediated by Clathrin, Actin and Unconventional Adaptors. PLoS Pathogens, 2010, 6, e1000792.	2.1	91

#	Article	IF	CITATIONS
55	The Ins and Outs of Anthrax Toxin. Toxins, 2016, 8, 69.	1.5	91
56	Characterisation of the heptameric pore-forming complex of theAeromonastoxin aerolysin using MALDI-TOF mass spectrometry. FEBS Letters, 1996, 384, 269-272.	1.3	90
57	Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade. ELife, 2017, 6, .	2.8	89
58	The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 420-451.	2.3	88
59	Spectroscopic study of the activation and oligomerization of the channel-forming toxin aerolysin: identification of the site of proteolytic activation. Biochemistry, 1992, 31, 8566-8570.	1.2	87
60	Hrs and SNX3 Functions in Sorting and Membrane Invagination within Multivesicular Bodies. PLoS Biology, 2008, 6, e214.	2.6	87
61	Elastic Membrane Heterogeneity of Living Cells Revealed by Stiff Nanoscale Membrane Domains. Biophysical Journal, 2008, 94, 1521-1532.	0.2	83
62	Cross-talk between Caveolae and Glycosylphosphatidylinositol-rich Domains. Journal of Biological Chemistry, 2001, 276, 30729-30736.	1.6	81
63	Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis. EMBO Journal, 2012, 31, 2615-2628.	3.5	81
64	S-acylation controls SARS-CoV-2 membrane lipid organization and enhances infectivity. Developmental Cell, 2021, 56, 2790-2807.e8.	3.1	80
65	Rafts Can Trigger Contact-mediated Secretion of Bacterial Effectors via a Lipid-based Mechanism. Journal of Biological Chemistry, 2004, 279, 47792-47798.	1.6	78
66	SwissPalm 2: Protein S-Palmitoylation Database. Methods in Molecular Biology, 2019, 2009, 203-214.	0.4	76
67	Diversity of Raft-Like Domains in Late Endosomes. PLoS ONE, 2007, 2, e391.	1.1	76
68	The lectin-like domain of tumor necrosis factor-α increases membrane conductance in microvascular endothelial cells and peritoneal macrophages. European Journal of Immunology, 1999, 29, 3105-3111.	1.6	74
69	Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. Nature Communications, 2018, 9, 334.	5.8	73
70	Aerolysin Induces G-protein Activation and Ca2+Release from Intracellular Stores in Human Granulocytes. Journal of Biological Chemistry, 1998, 273, 18122-18129.	1.6	71
71	Receptors of anthrax toxin and cell entry. Molecular Aspects of Medicine, 2009, 30, 406-412.	2.7	71
72	The dark sides of capillary morphogenesis gene 2. EMBO Journal, 2012, 31, 3-13.	3.5	71

#	Article	IF	CITATIONS
73	Landing on lipid rafts. Trends in Cell Biology, 1999, 9, 212-213.	3.6	70
74	All in the family: the toxic activity of pore-forming colicins. Toxicology, 1994, 87, 85-108.	2.0	69
75	Purification and Analysis of Authentic CLIP-170 and Recombinant Fragments. Journal of Biological Chemistry, 1999, 274, 25883-25891.	1.6	65
76	Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux. PLoS Biology, 2019, 17, e3000553.	2.6	65
77	Dual Chaperone Role of the C-Terminal Propeptide in Folding and Oligomerization of the Pore-Forming Toxin Aerolysin. PLoS Pathogens, 2011, 7, e1002135.	2.1	64
78	Palmitoylation mediates membrane association of hepatitis E virus ORF3 protein and is required for infectious particle secretion. PLoS Pathogens, 2018, 14, e1007471.	2.1	60
79	Conversion of a transmembrane to a water-soluble protein complex by a single point mutation. Nature Structural Biology, 2002, 9, 729-733.	9.7	59
80	Intrinsic Disorder in Transmembrane Proteins: Roles in Signaling and Topology Prediction. PLoS ONE, 2016, 11, e0158594.	1.1	59
81	Aerolysin—A Paradigm for Membrane Insertion of Beta-Sheet Protein Toxins?. Journal of Structural Biology, 1998, 121, 92-100.	1.3	57
82	CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. Nature Communications, 2017, 8, 15861.	5.8	56
83	The role of the inflammasome in cellular responses to toxins and bacterial effectors. Seminars in Immunopathology, 2007, 29, 249-260.	2.8	54
84	Protonation of Histidine-132 Promotes Oligomerization of the Channel-Forming Toxin Aerolysin. Biochemistry, 1995, 34, 16450-16455.	1.2	50
85	Anthrax toxin triggers the activation of src-like kinases to mediate its own uptake. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1420-1424.	3.3	50
86	Dimerization stabilizes the pore-forming toxin aerolysin in solution. Journal of Biological Chemistry, 1993, 268, 18272-9.	1.6	50
87	The membrane insertion of colicins. FEBS Letters, 1992, 307, 26-29.	1.3	49
88	Sensitivity of Polarized Epithelial Cells to the Pore-Forming Toxin Aerolysin. Infection and Immunity, 2003, 71, 739-746.	1.0	49
89	Conformational Changes Due to Membrane Binding and Channel Formation by Staphylococcal α-Toxin. Journal of Biological Chemistry, 1997, 272, 5709-5717.	1.6	47
90	Anthrax toxin receptor 2a controls mitotic spindle positioning. Nature Cell Biology, 2013, 15, 28-39.	4.6	47

#	Article	IF	CITATIONS
91	Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications. ACS Sensors, 2019, 4, 530-548.	4.0	47
92	Hyaline Fibromatosis Syndrome inducing mutations in the ectodomain of anthrax toxin receptor 2 can be rescued by proteasome inhibitors. EMBO Molecular Medicine, 2011, 3, 208-221.	3.3	45
93	Conformational Changes in Aerolysin during the Transition from the Water-Soluble Protoxin to the Membrane Channelâ€. Biochemistry, 1997, 36, 15224-15232.	1.2	43
94	The glycan core of GPI-anchored proteins modulates aerolysin binding but is not sufficient: the polypeptide moiety is required for the toxin-receptor interaction. FEBS Letters, 2002, 512, 249-254.	1.3	42
95	Ubiquitin-dependent folding of the Wnt signaling coreceptor LRP6. ELife, 2016, 5, .	2.8	42
96	Not as simple as just punching a hole. Toxicon, 2001, 39, 1637-1645.	0.8	41
97	Aerolysin from Aeromonas hydrophila and Related Toxins. Current Topics in Microbiology and Immunology, 2001, 257, 35-52.	0.7	40
98	Damage of eukaryotic cells by the pore-forming toxin sticholysin II: Consequences of the potassium efflux. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 982-992.	1.4	39
99	Role of acidic lipids in the translocation and channel activity of colicins A and N in Escherichia coli cells. FEBS Journal, 1993, 213, 217-221.	0.2	38
100	Analysis of glycosyl phosphatidylinositol-anchored proteins by two-dimensional gel electrophoresis. Electrophoresis, 2000, 21, 3351-3356.	1.3	38
101	Functional interactions between anthrax toxin receptors and the WNT signalling protein LRP6. Cellular Microbiology, 2008, 10, 2509-2519.	1.1	38
102	Structural, physicochemical and dynamic features conserved within the aerolysin pore-forming toxin family. Scientific Reports, 2017, 7, 13932.	1.6	38
103	Partial C-terminal Unfolding Is Required for Channel Formation by Staphylococcal -toxin. Journal of Biological Chemistry, 1996, 271, 8655-8660.	1.6	37
104	Movement of a Loop in Domain 3 of Aerolysin Is Required for Channel Formationâ€. Biochemistry, 1998, 37, 741-746.	1.2	37
105	Increased Stability upon Heptamerization of the Pore-forming Toxin Aerolysin. Journal of Biological Chemistry, 1999, 274, 36722-36728.	1.6	37
106	Model-Driven Understanding of Palmitoylation Dynamics: Regulated Acylation of the Endoplasmic Reticulum Chaperone Calnexin. PLoS Computational Biology, 2016, 12, e1004774.	1.5	37
107	The C-terminal peptide produced upon proteolytic activation of the cytolytic toxin aerolysin is not involved in channel formation Journal of Biological Chemistry, 1994, 269, 30496-30501.	1.6	36
108	The 2DX robot: A membrane protein 2D crystallization Swiss Army knife. Journal of Structural Biology, 2010, 169, 370-378.	1.3	34

#	Article	IF	CITATIONS
109	A toxic palmitoylation of Cdc42 enhances NF-κB signaling and drives a severe autoinflammatory syndrome. Journal of Allergy and Clinical Immunology, 2020, 146, 1201-1204.e8.	1.5	33
110	Novel ubiquitin-dependent quality control in the endoplasmic reticulum. Trends in Cell Biology, 2009, 19, 357-363.	3.6	31
111	Calnexin Controls the STAT3-Mediated Transcriptional Response to EGF. Molecular Cell, 2013, 51, 386-396.	4.5	31
112	Palmitoylated acyl protein thioesterase APT2 deforms membranes to extract substrate acyl chains. Nature Chemical Biology, 2021, 17, 438-447.	3.9	31
113	Sliding doors: clathrin-coated pits or caveolae?. Nature Cell Biology, 2003, 5, 382-384.	4.6	30
114	Systemic hyalinosis mutations in the CMG2 ectodomain leading to loss of function through retention in the endoplasmic reticulum. Human Mutation, 2009, 30, 583-589.	1.1	30
115	Binding of Lassa virus perturbs extracellular matrix-induced signal transduction via dystroglycan. Cellular Microbiology, 2012, 14, 1122-1134.	1.1	30
116	The C-terminal peptide produced upon proteolytic activation of the cytolytic toxin aerolysin is not involved in channel formation. Journal of Biological Chemistry, 1994, 269, 30496-501.	1.6	30
117	The cytolytic toxin aerolysin: from the soluble form to the transmembrane channel. Toxicology, 1994, 87, 19-28.	2.0	27
118	About lipids and toxins. FEBS Letters, 2006, 580, 5572-5579.	1.3	27
119	Dimer Dissociation of the Pore-forming Toxin Aerolysin Precedes Receptor Binding. Journal of Biological Chemistry, 1999, 274, 37705-37708.	1.6	26
120	Maturation modulates caspase-1-independent responses of dendritic cells to Anthrax Lethal Toxin. Cellular Microbiology, 2008, 10, 1190-1207.	1.1	26
121	Anthrax toxin requires ZDHHC5-mediated palmitoylation of its surface-processing host enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1279-1288.	3.3	26
122	Oiling the wheels of the endocytic pathway. Trends in Cell Biology, 2002, 12, 296-299.	3.6	25
123	The disulfide bond in the Aeromonas hydrophila lipase/acyltransferase stabilizes the structure but is not required for secretion or activity. Journal of Bacteriology, 1997, 179, 3116-3121.	1.0	24
124	Membrane interaction of TNF is not sufficient to trigger increase in membrane conductance in mammalian cells. FEBS Letters, 1999, 460, 107-111.	1.3	24
125	Pathogens, toxins, and lipid rafts. Protoplasma, 2000, 212, 8-14.	1.0	24
126	Water permeabilities and salt reflection coefficients of luminal, basolateral and intracellular membrane vesicles isolated from rabbit kidney proximal tubule. Biochimica Et Biophysica Acta - Biomembranes, 1989, 986, 332-340.	1.4	23

#	Article	IF	CITATIONS
127	Palmitoylation, pathogens and their host. Biochemical Society Transactions, 2013, 41, 84-88.	1.6	23
128	Hemagglutinin of Influenza A, but not of Influenza B and C viruses is acylated by ZDHHC2, 8, 15 and 20. Biochemical Journal, 2020, 477, 285-303.	1.7	23
129	S-acylation by ZDHHC20 targets ORAI1 channels to lipid rafts for efficient Ca2+ signaling by Jurkat T cell receptors at the immune synapse. ELife, 2021, 10, .	2.8	23
130	Separation of early steps in endocytic membrane transport. Electrophoresis, 1997, 18, 2689-2693.	1.3	20
131	The tip of a molecular syringe. Trends in Microbiology, 1999, 7, 341-343.	3.5	20
132	Dynamics of GPI-anchored proteins on the surface of living cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2, 1-7.	1.7	20
133	Local and substrate-specific S-palmitoylation determines subcellular localization of Gαo. Nature Communications, 2022, 13, 2072.	5.8	19
134	The molten globule intermediate for protein insertion or translocation through membranes. Trends in Cell Biology, 1992, 2, 343-8.	3.6	17
135	Involvement of a Golgi-resident GPI-anchored Protein in Maintenance of the Golgi Structure. Molecular Biology of the Cell, 2007, 18, 1261-1271.	0.9	16
136	The Staphylococcal α-Toxin Pore Has a Flexible Conformationâ€. Biochemistry, 1999, 38, 4296-4302.	1.2	15
137	In-Depth Analysis of Hyaline Fibromatosis Syndrome Frameshift Mutations at the Same Site Reveal the Necessity of Personalized Therapy. Human Mutation, 2013, 34, 1005-1017.	1.1	14
138	Surface dynamics of aerolysin on the plasma membrane of living cells. International Journal of Medical Microbiology, 2000, 290, 363-367.	1.5	13
139	Ligand Binding to the Collagen VI Receptor Triggers a Talin-to-RhoA Switch that Regulates Receptor Endocytosis. Developmental Cell, 2020, 53, 418-430.e4.	3.1	12
140	Oiling the key hole. Molecular Microbiology, 2005, 56, 575-577.	1.2	11
141	Kicking Out Pathogens in Exosomes. Cell, 2015, 161, 1241-1242.	13.5	10
142	Physical and chemical characterization of the oligomerization state of theAeromonas hydrophilalipase/acyltransferase. FEBS Letters, 1993, 333, 296-300.	1.3	9
143	Revealing Assembly of a Pore-Forming Complex Using Single-Cell Kinetic Analysis and Modeling. Biophysical Journal, 2016, 110, 1574-1581.	0.2	9
144	Converging physiological roles of the anthrax toxin receptors. F1000Research, 2019, 8, 1415.	0.8	9

#	Article	IF	CITATIONS
145	Exotoxin Secretion: Getting Out to Find the Way In. Cell Host and Microbe, 2008, 3, 7-8.	5.1	8
146	Wnt-controlled sphingolipids modulate Anthrax Toxin Receptor palmitoylation to regulate oriented mitosis in zebrafish. Nature Communications, 2020, 11, 3317.	5.8	8
147	Plasticity of the transmembrane β-barrel. Trends in Microbiology, 2000, 8, 89-90.	3.5	7
148	Harnessing the Membrane Translocation Properties of AB Toxins for Therapeutic Applications. Toxins, 2021, 13, 36.	1.5	7
149	Flow cytometry and sorting of amphibian bladder endocytic vesicles containing ADH-sensitive water channels. Journal of Membrane Biology, 1992, 128, 133-139.	1.0	6
150	Sensing proteins outside of the box. Nature Biotechnology, 2000, 18, 1037-1037.	9.4	5
151	Aerolysin and related Aeromonas toxins. , 2006, , 608-622.		5
152	Aerolysin and Related Aeromonas Toxins. , 2015, , 773-793.		4
153	Mammalian membrane trafficking as seen through the lens of bacterial toxins. Cellular Microbiology, 2020, 22, e13167.	1.1	4
154	The lectin-like domain of tumor necrosis factor-α increases membrane conductance in microvascular endothelial cells and peritoneal macrophages. , 1999, 29, 3105.		4
155	A bacterial big-MAC attack. Nature Structural and Molecular Biology, 2004, 11, 1163-1164.	3.6	3
156	Toxoplasma: Guess Who's Coming to Dinner. Cell, 2006, 125, 226-228.	13.5	3
157	Preliminary crystallographic analysis of two oligomerization-deficient mutants of the aerolysin toxin, H132D and H132N, in their proteolyzed forms. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1626-1630.	0.7	3
158	Differential Dependence on N-Glycosylation of Anthrax Toxin Receptors CMG2 and TEM8. PLoS ONE, 2015, 10, e0119864.	1.1	3
159	Dynamic Radiolabeling of S-Palmitoylated Proteins. Methods in Molecular Biology, 2019, 2009, 111-127.	0.4	3
160	Membrane-Damaging Toxins: Pore Formation. , 2014, , 189-202.		2
161	Staphylococcus aureus alpha toxin can bind to cholesterol-sensitive phosphatidyl choline head group arrangements. Matters, 0, , .	1.0	2
162	Did Cholera Toxin Finally Get Caught?. Cell Host and Microbe, 2013, 13, 501-503.	5.1	1

#	Article	IF	CITATIONS
163	Analysis of glycosyl phosphatidylinositol-anchored proteins by two-dimensional gel electrophoresis. , 2000, 21, 3351.		1
164	The Pore-Forming Toxin Aerolysin: From the Soluble to a Transmembrane Form. , 1994, , 181-190.		1
165	Structure and Assembly of the Channel-Forming Aeromonas Toxin Aerolysin. Molecular Biology Intelligence Unit, 1996, , 79-95.	0.2	1
166	Toxins in the Endosomes. , 2006, , 145-152.		1
167	A Novel Talin-to-RhoA Switch Mechanism Upon Ligand Binding of the Collagen VI Receptor CMG2. SSRN Electronic Journal, 0, , .	0.4	1
168	La vie sans cavéoles. Medecine/Sciences, 2002, 18, 28-29.	0.0	0
169	Focusing the Aims and Scope for Cellular Microbiology. Cellular Microbiology, 2007, 9, 2767-2767.	1.1	0
170	Getting the Opportunity to Fly on your own. Chimia, 2009, 63, 862.	0.3	0
171	Assembly and Function of Pore-Forming Toxin Aerolysin from Aeromonas Hydrophila. Biophysical Journal, 2011, 100, 389a.	0.2	0
172	The Molecular Assembly of the Aerolysin Pore Reveals a Unique Swirling Membrane-Insertion Mechanism. Biophysical Journal, 2013, 104, 395a.	0.2	0
173	Puncturing Cell Membranes: Comparison of Colicin A and Aerolysin. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1992, , 393-401.	0.2	Ο