F Gisou Van Der Goot

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6473633/f-gisou-van-der-goot-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15,850 63 176 124 h-index g-index citations papers 6.46 17,834 9.8 214 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
176	Local and substrate-specific S-palmitoylation determines subcellular localization of GB <i>Nature Communications</i> , 2022 , 13, 2072	17.4	2
175	S-acylation by ZDHHC20 targets ORAI1 channels to lipid rafts for efficient Ca signaling by Jurkat T cell receptors at the immune synapse <i>ELife</i> , 2021 , 10,	8.9	3
174	S-acylation controls SARS-CoV-2 membrane lipid organization and enhances infectivity. <i>Developmental Cell</i> , 2021 , 56, 2790-2807.e8	10.2	10
173	Harnessing the Membrane Translocation Properties of AB Toxins for Therapeutic Applications. <i>Toxins</i> , 2021 , 13,	4.9	3
172	Palmitoylated acyl protein thioesterase APT2 deforms membranes to extract substrate acyl chains. <i>Nature Chemical Biology</i> , 2021 , 17, 438-447	11.7	9
171	Mammalian membrane trafficking as seen through the lens of bacterial toxins. <i>Cellular Microbiology</i> , 2020 , 22, e13167	3.9	2
170	Wnt-controlled sphingolipids modulate Anthrax Toxin Receptor palmitoylation to regulate oriented mitosis in zebrafish. <i>Nature Communications</i> , 2020 , 11, 3317	17.4	4
169	Hemagglutinin of Influenza A, but not of Influenza B and C viruses is acylated by ZDHHC2, 8, 15 and 20. <i>Biochemical Journal</i> , 2020 , 477, 285-303	3.8	11
168	Ligand Binding to the Collagen VI Receptor Triggers a Talin-to-RhoA Switch that Regulates Receptor Endocytosis. <i>Developmental Cell</i> , 2020 , 53, 418-430.e4	10.2	5
167	A toxic palmitoylation of Cdc42 enhances NF- B signaling and drives a severe autoinflammatory syndrome. <i>Journal of Allergy and Clinical Immunology</i> , 2020 , 146, 1201-1204.e8	11.5	15
166	SwissPalm 2: Protein S-Palmitoylation Database. <i>Methods in Molecular Biology</i> , 2019 , 2009, 203-214	1.4	28
165	Dynamic Radiolabeling of S-Palmitoylated Proteins. <i>Methods in Molecular Biology</i> , 2019 , 2009, 111-127	1.4	2
164	Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications. <i>ACS Sensors</i> , 2019 , 4, 530-548	9.2	30
163	Converging physiological roles of the anthrax toxin receptors. F1000Research, 2019, 8,	3.6	5
162	Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux. <i>PLoS Biology</i> , 2019 , 17, e3000553	9.7	26
161	Anthrax toxin requires ZDHHC5-mediated palmitoylation of its surface-processing host enzymes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 1279-1288	11.5	15
160	Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux 2019 , 17, e3000553		

(2016-2019)

159	Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux 2019 , 17, e3000553		
158	Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux 2019 , 17, e3000553		
157	Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux 2019 , 17, e3000553		
156	Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux 2019 , 17, e3000553		
155	Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux 2019 , 17, e3000553		
154	Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. <i>Nature Communications</i> , 2018 , 9, 334	17.4	47
153	The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2018 , 53, 420-451	8.7	52
152	Palmitoylation mediates membrane association of hepatitis E virus ORF3 protein and is required for infectious particle secretion. <i>PLoS Pathogens</i> , 2018 , 14, e1007471	7.6	39
151	Targeting STING with covalent small-molecule inhibitors. <i>Nature</i> , 2018 , 559, 269-273	50.4	284
150	Damage of eukaryotic cells by the pore-forming toxin sticholysin II: Consequences of the potassium efflux. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2017 , 1859, 982-992	3.8	35
149	CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. <i>Nature Communications</i> , 2017 , 8, 15861	17.4	36
148	Structural, physicochemical and dynamic features conserved within the aerolysin pore-forming toxin family. <i>Scientific Reports</i> , 2017 , 7, 13932	4.9	21
147	Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade. ELife, 2017, 6,	8.9	53
146	Revealing Assembly of a Pore-Forming Complex Using Single-Cell Kinetic Analysis and Modeling. <i>Biophysical Journal</i> , 2016 , 110, 1574-1581	2.9	7
145	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838
144	Pore-forming toxins: ancient, but never really out of fashion. <i>Nature Reviews Microbiology</i> , 2016 , 14, 77	-922.2	407
143	Intrinsic Disorder in Transmembrane Proteins: Roles in Signaling and Topology Prediction. <i>PLoS ONE</i> , 2016 , 11, e0158594	3.7	35
142	Ubiquitin-dependent folding of the Wnt signaling coreceptor LRP6. ELife, 2016, 5,	8.9	27

141	Author response: Ubiquitin-dependent folding of the Wnt signaling coreceptor LRP6 2016 ,		2
140	The Ins and Outs of Anthrax Toxin. <i>Toxins</i> , 2016 , 8,	4.9	63
139	Model-Driven Understanding of Palmitoylation Dynamics: Regulated Acylation of the Endoplasmic Reticulum Chaperone Calnexin. <i>PLoS Computational Biology</i> , 2016 , 12, e1004774	5	24
138	Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process. <i>Nature Communications</i> , 2016 , 7, 12062	17.4	108
137	Differential dependence on N-glycosylation of anthrax toxin receptors CMG2 and TEM8. <i>PLoS ONE</i> , 2015 , 10, e0119864	3.7	1
136	Aerolysin and Related Aeromonas Toxins 2015 , 773-793		1
135	Kicking Out Pathogens in Exosomes. <i>Cell</i> , 2015 , 161, 1241-2	56.2	8
134	SwissPalm: Protein Palmitoylation database. <i>F1000Research</i> , 2015 , 4, 261	3.6	133
133	Membrane-Damaging Toxins: Pore Formation 2014, 189-202		1
132	Did cholera toxin finally get caught?. Cell Host and Microbe, 2013, 13, 501-503	23.4	1
132 131	Did cholera toxin finally get caught?. <i>Cell Host and Microbe</i> , 2013 , 13, 501-503 Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. <i>Nature Chemical Biology</i> , 2013 , 9, 623-9	23.4	150
	Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. <i>Nature</i>		
131	Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. <i>Nature Chemical Biology</i> , 2013 , 9, 623-9	11. 7	150
131	Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. <i>Nature Chemical Biology</i> , 2013 , 9, 623-9 What does S-palmitoylation do to membrane proteins?. <i>FEBS Journal</i> , 2013 , 280, 2766-74	11.7 5·7 17.6	150
131 130 129	Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. <i>Nature Chemical Biology</i> , 2013 , 9, 623-9 What does S-palmitoylation do to membrane proteins?. <i>FEBS Journal</i> , 2013 , 280, 2766-74 Calnexin controls the STAT3-mediated transcriptional response to EGF. <i>Molecular Cell</i> , 2013 , 51, 386-96	11.7 5·7 17.6	150 159 26
131 130 129 128	Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. <i>Nature Chemical Biology</i> , 2013 , 9, 623-9 What does S-palmitoylation do to membrane proteins?. <i>FEBS Journal</i> , 2013 , 280, 2766-74 Calnexin controls the STAT3-mediated transcriptional response to EGF. <i>Molecular Cell</i> , 2013 , 51, 386-96 Biochemical membrane lipidomics during Drosophila development. <i>Developmental Cell</i> , 2013 , 24, 98-11. In-depth analysis of hyaline fibromatosis syndrome frameshift mutations at the same site reveal	11.7 5.7 17.6 110.2	150 159 26 103
131 130 129 128	Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. <i>Nature Chemical Biology</i> , 2013 , 9, 623-9 What does S-palmitoylation do to membrane proteins?. <i>FEBS Journal</i> , 2013 , 280, 2766-74 Calnexin controls the STAT3-mediated transcriptional response to EGF. <i>Molecular Cell</i> , 2013 , 51, 386-96 Biochemical membrane lipidomics during Drosophila development. <i>Developmental Cell</i> , 2013 , 24, 98-11. In-depth analysis of hyaline fibromatosis syndrome frameshift mutations at the same site reveal the necessity of personalized therapy. <i>Human Mutation</i> , 2013 , 34, 1005-17	11.7 5.7 17.6 110.2	150 159 26 103 13

(2009-2012)

123	Binding of Lassa virus perturbs extracellular matrix-induced signal transduction via dystroglycan. <i>Cellular Microbiology</i> , 2012 , 14, 1122-34	3.9	28
122	Pathogenic pore-forming proteins: function and host response. Cell Host and Microbe, 2012, 12, 266-75	23.4	146
121	Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis. <i>EMBO Journal</i> , 2012 , 31, 2615-28	13	63
120	Palmitoylated calnexin is a key component of the ribosome-translocon complex. <i>EMBO Journal</i> , 2012 , 31, 1823-35	13	116
119	The dark sides of capillary morphogenesis gene 2. <i>EMBO Journal</i> , 2012 , 31, 3-13	13	58
118	Pore-forming toxins induce multiple cellular responses promoting survival. <i>Cellular Microbiology</i> , 2011 , 13, 1026-43	3.9	114
117	Hyaline fibromatosis syndrome inducing mutations in the ectodomain of anthrax toxin receptor 2 can be rescued by proteasome inhibitors. <i>EMBO Molecular Medicine</i> , 2011 , 3, 208-21	12	39
116	Dynamics of unfolded protein transport through an aerolysin pore. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2923-31	16.4	173
115	Dual chaperone role of the C-terminal propeptide in folding and oligomerization of the pore-forming toxin aerolysin. <i>PLoS Pathogens</i> , 2011 , 7, e1002135	7.6	45
114	Monalysin, a novel Epore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. <i>PLoS Pathogens</i> , 2011 , 7, e1002259	7.6	75
113	Extending the aerolysin family: from bacteria to vertebrates. <i>PLoS ONE</i> , 2011 , 6, e20349	3.7	80
112	Anthrax toxin triggers the activation of src-like kinases to mediate its own uptake. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 1420-4	11.5	42
111	Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. <i>PLoS Pathogens</i> , 2010 , 6, e1000792	7.6	78
110	The 2DX robot: a membrane protein 2D crystallization Swiss Army knife. <i>Journal of Structural Biology</i> , 2010 , 169, 370-8	3.4	33
109	Structure and assembly of pore-forming proteins. Current Opinion in Structural Biology, 2010, 20, 241-6	8.1	135
108	Preliminary crystallographic analysis of two oligomerization-deficient mutants of the aerolysin toxin, H132D and H132N, in their proteolyzed forms. <i>Acta Crystallographica Section F: Structural Biology Communications</i> , 2010 , 66, 1626-30		2
107	Novel ubiquitin-dependent quality control in the endoplasmic reticulum. <i>Trends in Cell Biology</i> , 2009 , 19, 357-63	18.3	28
106	Membrane injury by pore-forming proteins. <i>Current Opinion in Cell Biology</i> , 2009 , 21, 589-95	9	109

105	Systemic hyalinosis mutations in the CMG2 ectodomain leading to loss of function through retention in the endoplasmic reticulum. <i>Human Mutation</i> , 2009 , 30, 583-9	4.7	28
104	Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. <i>Cell Host and Microbe</i> , 2009 , 6, 137-49	23.4	259
103	Receptors of anthrax toxin and cell entry. <i>Molecular Aspects of Medicine</i> , 2009 , 30, 406-12	16.7	63
102	Palmitoylation of membrane proteins (Review). <i>Molecular Membrane Biology</i> , 2009 , 26, 55-66	3.4	123
101	Maturation modulates caspase-1-independent responses of dendritic cells to Anthrax lethal toxin. <i>Cellular Microbiology</i> , 2008 , 10, 1190-207	3.9	26
100	Functional interactions between anthrax toxin receptors and the WNT signalling protein LRP6. <i>Cellular Microbiology</i> , 2008 , 10, 2509-19	3.9	35
99	Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane domains. <i>Biophysical Journal</i> , 2008 , 94, 1521-32	2.9	72
98	Hrs and SNX3 functions in sorting and membrane invagination within multivesicular bodies. <i>PLoS Biology</i> , 2008 , 6, e214	9.7	76
97	Pore formation: an ancient yet complex form of attack. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2008 , 1778, 1611-23	3.8	145
96	Exotoxin secretion: getting out to find the way in. <i>Cell Host and Microbe</i> , 2008 , 3, 7-8	23.4	8
95	Palmitoylation and ubiquitination regulate exit of the Wnt signaling protein LRP6 from the endoplasmic reticulum. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 5384-9	11.5	119
94	Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. <i>PLoS Pathogens</i> , 2008 , 4, e1000176	7.6	151
93	Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. <i>PLoS ONE</i> , 2008 , 3, e2758	3.7	143
92	Bacterial pore-forming toxins: the (w)hole story?. Cellular and Molecular Life Sciences, 2008, 65, 493-507	10.3	207
91	The role of the inflammasome in cellular responses to toxins and bacterial effectors. <i>Seminars in Immunopathology</i> , 2007 , 29, 249-60	12	50
90	Involvement of a Golgi-resident GPI-anchored protein in maintenance of the Golgi structure. <i>Molecular Biology of the Cell</i> , 2007 , 18, 1261-71	3.5	15
89	Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking. <i>PLoS ONE</i> , 2007 , 2, e851	3.7	105
88	Pore-forming toxins and cellular non-immune defenses (CNIDs). <i>Current Opinion in Microbiology</i> , 2007 , 10, 57-61	7.9	100

(2004-2007)

87	Diversity of raft-like domains in late endosomes. <i>PLoS ONE</i> , 2007 , 2, e391	3.7	59
86	Intra-endosomal membrane traffic. <i>Trends in Cell Biology</i> , 2006 , 16, 514-21	18.3	161
85	Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis. <i>Journal of Cell Biology</i> , 2006 , 172, 309-20	7:3	156
84	About lipids and toxins. FEBS Letters, 2006, 580, 5572-9	3.8	23
83	Toxoplasma: guess who's coming to dinner. Cell, 2006, 125, 226-8	56.2	2
82	Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. <i>Cell</i> , 2006 , 126, 1135-45	56.2	419
81	Aerolysin and related Aeromonas toxins 2006 , 608-622		4
80	Mechanisms of pathogen entry through the endosomal compartments. <i>Nature Reviews Molecular Cell Biology</i> , 2006 , 7, 495-504	48.7	271
79	A rivet model for channel formation by aerolysin-like pore-forming toxins. <i>EMBO Journal</i> , 2006 , 25, 457-	-66	78
78	Dynamics of GPI-anchored proteins on the surface of living cells. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2006 , 2, 1-7	6	18
77	Toxins in the Endosomes 2006 , 145-152		1
76	Anthrax toxin: the long and winding road that leads to the kill. <i>Trends in Microbiology</i> , 2005 , 13, 72-8	T 2 4	127
		12.4	1-/
75	Bacterial invasion via lipid rafts. <i>Cellular Microbiology</i> , 2005 , 7, 613-20	3.9	126
75 74	Bacterial invasion via lipid rafts. <i>Cellular Microbiology</i> , 2005 , 7, 613-20 Oiling the key hole. <i>Molecular Microbiology</i> , 2005 , 56, 575-7	3.9	126
74	Oiling the key hole. <i>Molecular Microbiology</i> , 2005 , 56, 575-7 Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at	4.1	10
74 73	Oiling the key hole. <i>Molecular Microbiology</i> , 2005 , 56, 575-7 Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. <i>Journal of Cell Biology</i> , 2004 , 166, 645-51 Clustering induces a lateral redistribution of alpha 2 beta 1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. <i>Molecular Biology of the Cell</i> ,	4.1 7.3	10

69	Bacterial subversion of lipid rafts. Current Opinion in Microbiology, 2004, 7, 4-10	7.9	93
68	Sliding doors: clathrin-coated pits or caveolae?. <i>Nature Cell Biology</i> , 2003 , 5, 382-4	23.4	28
67	Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. <i>Journal of Cell Biology</i> , 2003 , 160, 321-8	7.3	407
66	Sensitivity of polarized epithelial cells to the pore-forming toxin aerolysin. <i>Infection and Immunity</i> , 2003 , 71, 739-46	3.7	42
65	La vie sans cavBles. <i>Medecine/Sciences</i> , 2002 , 18, 28-29		
64	Conversion of a transmembrane to a water-soluble protein complex by a single point mutation. <i>Nature Structural Biology</i> , 2002 , 9, 729-33		51
63	Differential sorting and fate of endocytosed GPI-anchored proteins. <i>EMBO Journal</i> , 2002 , 21, 3989-400	0013	177
62	Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. <i>EMBO Journal</i> , 2002 , 21, 4449-57	13	192
61	Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin. <i>EMBO Journal</i> , 2002 , 21, 5047-56	13	95
60	Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts. <i>Journal of Biological Chemistry</i> , 2002 , 277, 34642-50	5.4	119
59	The glycan core of GPI-anchored proteins modulates aerolysin binding but is not sufficient: the polypeptide moiety is required for the toxin-receptor interaction. <i>FEBS Letters</i> , 2002 , 512, 249-54	3.8	36
58	The bacterial toxin toolkit. <i>Nature Reviews Molecular Cell Biology</i> , 2001 , 2, 530-7	48.7	124
57	Cross-talk between caveolae and glycosylphosphatidylinositol-rich domains. <i>Journal of Biological Chemistry</i> , 2001 , 276, 30729-36	5.4	77
56	Aerolysin from Aeromonas hydrophila and related toxins. <i>Current Topics in Microbiology and Immunology</i> , 2001 , 257, 35-52	3.3	33
55	Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. <i>Seminars in Immunology</i> , 2001 , 13, 89-97	10.7	212
54	Not as simple as just punching a hole. <i>Toxicon</i> , 2001 , 39, 1637-45	2.8	39
53	Analysis of glycosyl phosphatidylinositol-anchored proteins by two-dimensional gel electrophoresis. <i>Electrophoresis</i> , 2000 , 21, 3351-6	3.6	32
52	Pathogens, toxins, and lipid rafts. <i>Protoplasma</i> , 2000 , 212, 8-14	3.4	17

(1998-2000)

51	Surface dynamics of aerolysin on the plasma membrane of living cells. <i>International Journal of Medical Microbiology</i> , 2000 , 290, 363-7	3.7	11
50	Adventures of a pore-forming toxin at the target cell surface. <i>Trends in Microbiology</i> , 2000 , 8, 168-72	12.4	115
49	Plasticity of the transmembrane beta-barrel. <i>Trends in Microbiology</i> , 2000 , 8, 89-90	12.4	7
48	Analysis of glycosyl phosphatidylinositol-anchored proteins by two-dimensional gel electrophoresis 2000 , 21, 3351		1
47	Dimer dissociation of the pore-forming toxin aerolysin precedes receptor binding. <i>Journal of Biological Chemistry</i> , 1999 , 274, 37705-8	5.4	23
46	Increased stability upon heptamerization of the pore-forming toxin aerolysin. <i>Journal of Biological Chemistry</i> , 1999 , 274, 36722-8	5.4	33
45	Purification and analysis of authentic CLIP-170 and recombinant fragments. <i>Journal of Biological Chemistry</i> , 1999 , 274, 25883-91	5.4	60
44	Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin. <i>Journal of Cell Biology</i> , 1999 , 147, 175-84	7.3	134
43	Landing on lipid rafts. <i>Trends in Cell Biology</i> , 1999 , 9, 212-3	18.3	61
42	The lectin-like domain of tumor necrosis factor-alpha increases membrane conductance in microvascular endothelial cells and peritoneal macrophages. <i>European Journal of Immunology</i> , 1999 , 29, 3105-11	6.1	66
41	The tip of a molecular syringe. <i>Trends in Microbiology</i> , 1999 , 7, 341-3	12.4	18
40	Membrane interaction of TNF is not sufficient to trigger increase in membrane conductance in mammalian cells. <i>FEBS Letters</i> , 1999 , 460, 107-11	3.8	20
39	The staphylococcal alpha-toxin pore has a flexible conformation. <i>Biochemistry</i> , 1999 , 38, 4296-302	3.2	15
38	The lectin-like domain of tumor necrosis factor-lincreases membrane conductance in microvascular endothelial cells and peritoneal macrophages 1999 , 29, 3105		4
37	Movement of a loop in domain 3 of aerolysin is required for channel formation. <i>Biochemistry</i> , 1998 , 37, 741-6	3.2	34
36	Aerolysina paradigm for membrane insertion of beta-sheet protein toxins?. <i>Journal of Structural Biology</i> , 1998 , 121, 92-100	3.4	49
35	Aerolysin induces G-protein activation and Ca2+ release from intracellular stores in human granulocytes. <i>Journal of Biological Chemistry</i> , 1998 , 273, 18122-9	5.4	61
34	The pore-forming toxin proaerolysin is activated by furin. <i>Journal of Biological Chemistry</i> , 1998 , 273, 32	:6 5 6461	111

33	A pore-forming toxin interacts with a GPI-anchored protein and causes vacuolation of the endoplasmic reticulum. <i>Journal of Cell Biology</i> , 1998 , 140, 525-40	7.3	193
32	Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. <i>Infection and Immunity</i> , 1998 , 66, 5711-24	3.7	317
31	Conformational changes due to membrane binding and channel formation by staphylococcal alpha-toxin. <i>Journal of Biological Chemistry</i> , 1997 , 272, 5709-17	5.4	38
30	The disulfide bond in the Aeromonas hydrophila lipase/acyltransferase stabilizes the structure but is not required for secretion or activity. <i>Journal of Bacteriology</i> , 1997 , 179, 3116-21	3.5	19
29	Conformational changes in aerolysin during the transition from the water-soluble protoxin to the membrane channel. <i>Biochemistry</i> , 1997 , 36, 15224-32	3.2	42
28	Membrane insertion: The strategies of toxins (review). <i>Molecular Membrane Biology</i> , 1997 , 14, 45-64	3.4	130
27	Separation of early steps in endocytic membrane transport. <i>Electrophoresis</i> , 1997 , 18, 2689-93	3.6	20
26	Partial C-terminal unfolding is required for channel formation by staphylococcal alpha-toxin. Journal of Biological Chemistry, 1996 , 271, 8655-60	5.4	35
25	Characterisation of the heptameric pore-forming complex of the Aeromonas toxin aerolysin using MALDI-TOF mass spectrometry. <i>FEBS Letters</i> , 1996 , 384, 269-72	3.8	82
24	Aerolysinthe ins and outs of a model channel-forming toxin. <i>Molecular Microbiology</i> , 1996 , 19, 205-12	4.1	95
23	Structure and Assembly of the Channel-Forming Aeromonas Toxin Aerolysin. <i>Molecular Biology Intelligence Unit</i> , 1996 , 79-95		1
22	Protonation of histidine-132 promotes oligomerization of the channel-forming toxin aerolysin. <i>Biochemistry</i> , 1995 , 34, 16450-5	3.2	45
21	The cytolytic toxin aerolysin: from the soluble form to the transmembrane channel. <i>Toxicology</i> , 1994 , 87, 19-28	4.4	23
20	All in the family: the toxic activity of pore-forming colicins. <i>Toxicology</i> , 1994 , 87, 85-108	4.4	63
19	The C-terminal peptide produced upon proteolytic activation of the cytolytic toxin aerolysin is not involved in channel formation. <i>Journal of Biological Chemistry</i> , 1994 , 269, 30496-501	5.4	29
18	The Pore-Forming Toxin Aerolysin: From the Soluble to a Transmembrane Form 1994 , 181-190		1
17	The C-terminal peptide produced upon proteolytic activation of the cytolytic toxin aerolysin is not involved in channel formation <i>Journal of Biological Chemistry</i> , 1994 , 269, 30496-30501	5.4	29
16	Oligomerization of the channel-forming toxin aerolysin precedes insertion into lipid bilayers. Biochemistry, 1993 , 32, 2636-42	3.2	86

LIST OF PUBLICATIONS

15	Role of acidic lipids in the translocation and channel activity of colicins A and N in Escherichia coli cells. <i>FEBS Journal</i> , 1993 , 213, 217-21		36
14	Physical and chemical characterization of the oligomerization state of the Aeromonas hydrophila lipase/acyltransferase. <i>FEBS Letters</i> , 1993 , 333, 296-300	3.8	6
13	Dimerization stabilizes the pore-forming toxin aerolysin in solution. <i>Journal of Biological Chemistry</i> , 1993 , 268, 18272-9	5.4	49
12	Spectroscopic study of the activation and oligomerization of the channel-forming toxin aerolysin: identification of the site of proteolytic activation. <i>Biochemistry</i> , 1992 , 31, 8566-70	3.2	80
11	The membrane insertion of colicins. FEBS Letters, 1992, 307, 26-9	3.8	44
10	Flow cytometry and sorting of amphibian bladder endocytic vesicles containing ADH-sensitive water channels. <i>Journal of Membrane Biology</i> , 1992 , 128, 133-9	2.3	4
9	Puncturing Cell Membranes: Comparison of Colicin A and Aerolysin. <i>Jerusalem Symposia on Quantum Chemistry and Biochemistry</i> , 1992 , 393-401		
8	The molten globule intermediate for protein insertion or translocation through membranes. <i>Trends in Cell Biology</i> , 1992 , 2, 343-8	18.3	16
7	A Smolten-globuleSmembrane-insertion intermediate of the pore-forming domain of colicin A. <i>Nature</i> , 1991 , 354, 408-10	50.4	419
6	Water permeabilities and salt reflection coefficients of luminal, basolateral and intracellular membrane vesicles isolated from rabbit kidney proximal tubule. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1989 , 986, 332-40	3.8	21
5	Staphylococcus aureus alpha toxin can bind to cholesterol-sensitive phosphatidyl choline head group arrangements. <i>Matters</i> ,	О	1
4	A Novel Talin-to-RhoA Switch Mechanism Upon Ligand Binding of the Collagen VI Receptor CMG2. SSRN Electronic Journal,	1	1
3	Local and substrate-specific S-palmitoylation determines subcellular localization of GB		2
2	The architecture of the endoplasmic reticulum is regulated by the reversible lipid modification of the shaping protein CLIMP-63		2
1	S-acylation controls SARS-Cov-2 membrane lipid organization and enhances infectivity		3