Marwa S Elazazy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6473632/publications.pdf

Version: 2024-02-01

516710 580821 43 763 16 25 citations g-index h-index papers 46 46 46 412 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Watermelon rinds as cost-efficient adsorbent for acridine orange: a response surface methodological approach. Environmental Science and Pollution Research, 2023, 30, 71554-71573.	5.3	22
2	Synthesis and Application of Cobalt Oxide (Co3O4)-Impregnated Olive Stones Biochar for the Removal of Rifampicin and Tigecycline: Multivariate Controlled Performance. Nanomaterials, 2022, 12, 379.	4.1	19
3	Application of Samarium- and Terbium-Sensitized Luminescence via a Multivariate-Based Approach for the Determination of Orbifloxacin. Journal of Chemistry, 2022, 2022, 1-12.	1.9	1
4	Electrochemical Analysis of Sulfisoxazole Using Glassy Carbon Electrode (GCE) and MWCNTs/Rare Earth Oxide (CeO2 and Yb2O3) Modified-GCE Sensors. Molecules, 2022, 27, 2033.	3.8	4
5	Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters, 2022, 20, 2385-2485.	16.2	162
6	Lignin and Lignocellulosic Materials: A Glance on the Current Opportunities for Energy and Sustainability., 2021,, 621-652.		3
7	Biochar of Spent Coffee Grounds as Per Se and Impregnated with TiO2: Promising Waste-Derived Adsorbents for Balofloxacin. Molecules, 2021, 26, 2295.	3.8	29
8	Adsorption Characteristics of Pristine and Magnetic Olive Stones Biochar with Respect to Clofazimine. Nanomaterials, 2021, 11, 963.	4.1	21
9	Eco-Structured Adsorptive Removal of Tigecycline from Wastewater: Date Pits' Biochar versus the Magnetic Biochar. Nanomaterials, 2021, 11, 30.	4.1	30
10	Green Tea Waste as an Efficient Adsorbent for Methylene Blue: Structuring of a Novel Adsorbent Using Full Factorial Design. Molecules, 2021, 26, 6138.	3.8	16
11	Polymerization of organoalkoxysilanes: Kinetics of the polycondensation progress and the effect of solvent properties and salts addition. Chemical Physics, 2020, 530, 110642.	1.9	3
12	A Comparison between Different Agro-wastes and Carbon Nanotubes for Removal of Sarafloxacin from Wastewater: Kinetics and Equilibrium Studies. Molecules, 2020, 25, 5429.	3.8	15
13	Smart Synthesis of Trimethyl Ethoxysilane (TMS) Functionalized Core–Shell Magnetic Nanosorbents Fe3O4@SiO2: Process Optimization and Application for Extraction of Pesticides. Molecules, 2020, 25, 4827.	3.8	10
14	Application of Pineapple Leaves as Adsorbents for Removal of Rose Bengal from Wastewater: Process Optimization Operating Face-Centered Central Composite Design (FCCCD). Molecules, 2020, 25, 3752.	3.8	31
15	Recycling of Date Pits Into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach. Frontiers in Chemistry, 2019, 7, 552.	3.6	41
16	Utilization of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) for spectrochemical determination of l-ornithine: a multivariate optimization-assisted approach. RSC Advances, 2019, 9, 22106-22115.	3.6	8
17	Introductory Chapter: Infrared Spectroscopy - A Synopsis of the Fundamentals and Applications. , 2019, , .		10
18	Application of a definitive screening design for the synthesis of a charge-transfer complex of sparfloxacin with tetracyanoethylene: spectroscopic, thermodynamic, kinetics, and DFT computational studies. RSC Advances, 2019, 9, 24722-24732.	3.6	5

#	Article	IF	CITATIONS
19	Potato Peels as an Adsorbent for Heavy Metals from Aqueous Solutions: Eco-Structuring of a <i>Green</i> Adsorbent Operating Plackettâ€"Burman Design. Journal of Chemistry, 2019, 2019, 1-14.	1.9	59
20	Pomegranate peels as versatile adsorbents for water purification: Application of box–behnken design as a methodological optimization approach. Environmental Progress and Sustainable Energy, 2019, 38, 13223.	2.3	23
21	Kinetics of alkoxysilanes hydrolysis: An empirical approach. Scientific Reports, 2019, 9, 17624.	3.3	26
22	Bio-Waste Aloe vera Leaves as an Efficient Adsorbent for Titan Yellow from Wastewater: Structuring of a Novel Adsorbent Using Plackett-Burman Factorial Design. Applied Sciences (Switzerland), 2019, 9, 4856.	2.5	37
23	Eco-Structured Biosorptive Removal of Basic Fuchsin Using Pistachio Nutshells: A Definitive Screening Design—Based Approach. Applied Sciences (Switzerland), 2019, 9, 4855.	2.5	27
24	Application of fractional factorial design for green synthesis of cyano-modified silica nanoparticles: Chemometrics and multifarious response optimization. Advanced Powder Technology, 2018, 29, 1204-1215.	4.1	21
25	Plackett-Burman and Box-Behnken designs as chemometric tools for micro-determination of l-Ornithine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 397-406.	3.9	18
26	Polymerization of 3â€eyanopropyl (triethoxy) silane: A kinetic study using gas chromatography. International Journal of Chemical Kinetics, 2018, 50, 846-855.	1.6	9
27	Multivariate analysis of tioconazole — TCNQ charge transfer interaction: Kinetics, thermodynamics and twofold response optimization. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 202, 401-409.	3.9	2
28	Green Synthesis Of Functionalized Nanoparticles Using A Fractional Factorial Design: Impact On Particle Size And Distribution Optimization. , 2018 , , .		0
29	Application of Pulsed Streaming Potentials in Plastic Microfluidic Channels for Quantitative Point-of-Care Determination of Cardiac Markers. , 2016, , .		0
30	Interaction of p-synephrine with p-chloranil: experimental design and multiple response optimization. RSC Advances, 2016, 6, 64967-64976.	3.6	16
31	Synephrine as Antioxidant: Application in Quenching of Photo Induced Radical of Anthraquinone and Naphthoquinone. , 2016, , .		0
32	Determination of midodrine hydrochloride via Hantzsch condensation reaction: a factorial design based spectrophotometric approach. RSC Advances, 2015, 5, 48474-48483.	3.6	21
33	Self-association and thermodynamic behavior of etilefrine hydrochloride in aqueous electrolyte solution. Journal of Chemical Thermodynamics, 2014, 79, 76-83.	2.0	5
34	Validated Spectrophotometric Assay of Cefepime Hydrochloride and Cefuroxime Sodium Using a Tetrazolium Salt. E-Journal of Chemistry, 2012, 9, 2261-2267.	0.5	3
35	INTERACTIONS OF PHOSPHOMOLYBDIC ACID. Zagazig Journal of Pharmaceutical Sciences, 2012, 21, 20-24.	0.2	0
36	Label-Free Detection of Heparin, Streptavidin, and Other Probes by Pulsed Streaming Potentials in Plastic Microfluidic Channels. Analytical Chemistry, 2008, 80, 6532-6536.	6.5	26

#	Article	IF	CITATIONS
37	Spectrophotometric Determination of Aciclovir, Cefepirne Hydrochloride, Etamsylate and Metoclopramide Hydrochloride Usina 1,10 Phenanttrroline—Fe(lll) Reaqent. Scientia Pharmaceutica, 2004, 72, 73-86.	2.0	3
38	SPECTROPHOTOMETRIC DETERMINATION OF DAPSONE AND TRANEXAMIC ACID USING HANTZSCH REACTION AND ITS APPLICATION IN PHARMACEUTICAL FORMULATIONS. Zagazig Journal of Pharmaceutical Sciences, 2004, 13, 6-11.	0.2	1
39	Spectrophotometric Determination of Cefepime Hydrochloride, Cefoperazone Sodium, Ceftazidime Pentahydrate. Cefuroxime Sodium and Etamsylate Using Ammonium Molybdate. Scientia Pharmaceutica, 2003, 71, 211-228.	2.0	10
40	Analytical Calibrations: Schemes, Manuals, and Metrological Deliberations., 0, , .		2
41	Carbon-Based Materials (CBMs) for Determination and Remediation of Antimicrobials in Different Substrates: Wastewater and Infant Foods as Examples. , 0, , .		11
42	Electrochemical Impedance Spectroscopy (EIS) in Food, Water, and Drug Analyses: Recent Advances and Applications. , 0, , .		3
43	Factorial Design and Machine Learning Strategies: Impacts on Pharmaceutical Analysis. , 0, , .		8