
LÃ;szlÃ³ T Mika

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6472560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	27 Years of Catalytic Carbonylative Coupling Reactions in Hungary (1994–2021). Molecules, 2022, 27, 460.	1.7	9
2	1,4-Pentanediol: Vapor Pressure, Density, Viscosity, Refractive Index, and Its Isobaric Vapor–Liquid Equilibrium with 2-Methyltetrahydrofurane. Journal of Chemical & Engineering Data, 2022, 67, 1450-1459.	1.0	5
3	Isobaric Vapor–Liquid Equilibria for Binary Mixtures of Gamma-Valerolactone + Toluene. Journal of Chemical & Engineering Data, 2021, 66, 568-574.	1.0	7
4	Homogeneous transition metal catalyzed conversion of levulinic acid to gamma-valerolactone. Advances in Inorganic Chemistry, 2021, 77, 1-25.	0.4	8
5	Palladium-catalyzed aryloxy- and alkoxycarbonylation of aromatic iodides in Î ³ -valerolactone as bio-based solvent. Journal of Organometallic Chemistry, 2020, 923, 121407.	0.8	18
6	Tetrabutylphosphonium 4-ethoxyvalerate as a biomass-originated media for homogeneous palladium-catalyzed Hiyama coupling reactions. Chemical Papers, 2020, 74, 4593-4598.	1.0	5
7	lsobaric Vapor–Liquid Equilibria for Binary Mixtures of Biomass-Derived γ-Valerolactone + Tetrahydrofuran and 2-Methyltetrahydrofuran. Journal of Chemical & Engineering Data, 2020, 65, 3063-3071.	1.0	7
8	Homogeneous Pd-Catalyzed Heck Coupling in γ-Valerolactone as a Green Reaction Medium: A Catalytic, Kinetic, and Computational Study. ACS Sustainable Chemistry and Engineering, 2020, 8, 9926-9936.	3.2	22
9	Environmental sustainability assessment of a biomass-based chemical industry in the Visegrad countries: Czech Republic, Hungary, Poland, and Slovakia. Chemical Papers, 2020, 74, 3067-3076.	1.0	0
10	Isobaric Vapor–Liquid Equilibria of Binary Mixtures of γ-Valerolactone + Acetone and Ethyl Acetate. Journal of Chemical & Engineering Data, 2020, 65, 419-425.	1.0	6
11	Continuous flow hydrogenation of methyl and ethyl levulinate: an alternative route to <i>γ</i> -valerolactone production. Royal Society Open Science, 2019, 6, 182233.	1.1	11
12	Palladium-catalyzed Sonogashira coupling reactions in Î ³ -valerolactone-based ionic liquids. Beilstein Journal of Organic Chemistry, 2019, 15, 2907-2913.	1.3	13
13	Modular Synthesis of γ-Valerolactone-Based Ionic Liquids and Their Application as Alternative Media for Copper-Catalyzed Ullmann-type Coupling Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 5097-5104.	3.2	23
14	Conservative evolution and industrial metabolism in Green Chemistry. Green Chemistry, 2018, 20, 2171-2191.	4.6	45
15	Conversion of Carbohydrates to Chemicals. Series on Chemistry, Energy and the Environment, 2018, , 19-76.	0.3	0
16	Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 2018, 118, 505-613.	23.0	898
17	Rhodium-catalysed aryloxycarbonylation of iodo-aromatics by 4-substituted phenols with carbon monoxide or paraformaldehyde. Molecular Catalysis, 2018, 457, 67-73.	1.0	6
18	Ruthenium-catalyzed solvent-free conversion of furfural to furfuryl alcohol. RSC Advances, 2017, 7, 3331-3335.	1.7	34

LÃiszlÃ³ T Mika

#	Article	IF	CITATIONS
19	Vapor–Liquid Equilibrium of γ-Valerolactone and Formic Acid at <i>p</i> = 51 kPa. Journal of Chemical & Engineering Data, 2017, 62, 1058-1062.	1.0	11
20	Microwaveâ€Assisted Valorization of Biowastes to Levulinic Acid. ChemistrySelect, 2017, 2, 1375-1380.	0.7	27
21	Sustainability Metrics for Biomass-Based Carbon Chemicals. ACS Sustainable Chemistry and Engineering, 2017, 5, 2734-2740.	3.2	47
22	Rhodium-catalyzed hydroformylation in γ-valerolactone as a biomass-derived solvent. Journal of Organometallic Chemistry, 2017, 847, 140-145.	0.8	37
23	Stability of gamma-valerolactone under neutral, acidic, and basic conditions. Structural Chemistry, 2017, 28, 423-429.	1.0	57
24	Palladium-catalysed enantioselective hydroaryloxycarbonylation of styrenes by 4-substituted phenols. Molecular Catalysis, 2017, 438, 15-18.	1.0	16
25	Recycling of Sulfuric Acid in the Valorization of Biomass Residues. Periodica Polytechnica: Chemical Engineering, 2017, 61, 283.	0.5	1
26	Asymmetric Reduction of Ketones to Chiral Platform Molecules. , 2017, , 223-240.		0
27	Generation of Simulation Based Operational Database for an Acid Gas Removal Plant with Automatic Calculations. Periodica Polytechnica: Chemical Engineering, 2016, 60, 24-48.	0.5	Ο
28	Application of γâ€Valerolactone as an Alternative Biomassâ€Based Medium for Aminocarbonylation Reactions. ChemPlusChem, 2016, 81, 1224-1229.	1.3	37
29	Isobaric Vapor–Liquid Equilibria for Binary Mixtures of γ-Valerolactone + Methanol, Ethanol, and 2-Propanol. Journal of Chemical & Engineering Data, 2016, 61, 3326-3333.	1.0	23
30	Vapor–Liquid Equilibrium Study of the Gamma-Valerolactone–Water Binary System. Journal of Chemical & Engineering Data, 2016, 61, 1502-1508.	1.0	42
31	A step towards hydroformylation under sustainable conditions: platinum-catalysed enantioselective hydroformylation of styrene in gamma-valerolactone. Green Chemistry, 2016, 18, 842-847.	4.6	69
32	The role of water in catalytic biomass-based technologies to produce chemicals and fuels. Catalysis Today, 2015, 247, 33-46.	2.2	32
33	Direct asymmetric reduction of levulinic acid to gamma-valerolactone: synthesis of a chiral platform molecule. Green Chemistry, 2015, 17, 5189-5195.	4.6	70
34	Use of Gamma-Valerolactone as an Illuminating Liquid and Lighter Fluid. ACS Sustainable Chemistry and Engineering, 2015, 3, 1899-1904.	3.2	60
35	Catalytic transfer hydrogenation in \hat{I}^3 -valerolactone-based ionic liquids. RSC Advances, 2015, 5, 72529-72535.	1.7	20
36	Selective Conversion of Levulinic and Formic Acids to γ-Valerolactone with the Shvo Catalyst. Organometallics, 2014, 33, 181-187.	1.1	128

LÃiszlÃ³ T Mika

#	Article	IF	CITATIONS
37	Production of platform molecules from sweet sorghum. RSC Advances, 2014, 4, 2081-2088.	1.7	27
38	An improved catalytic system for the reduction of levulinic acid to Î ³ -valerolactone. Catalysis Science and Technology, 2014, 4, 2908-2912.	2.1	72
39	Synthesis of Î ³ -valerolactone using a continuous-flow reactor. RSC Advances, 2013, 3, 16283.	1.7	58
40	Water-Soluble-Phosphines-Assisted Cobalt Separation in Cobalt-Catalyzed Hydroformylation. Organometallics, 2013, 32, 5326-5332.	1.1	9
41	Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chemistry, 2013, 15, 439-445.	4.6	188
42	Rhodium-catalyzed hydrogenation of olefins in Î ³ -valerolactone-based ionic liquids. Green Chemistry, 2013, 15, 1857.	4.6	50
43	Efficient catalytic hydrogenation of levulinic acid: a key step in biomass conversion. Green Chemistry, 2012, 14, 2057.	4.6	128
44	Fluorous Hydrogenation. Topics in Current Chemistry, 2011, 308, 233-245.	4.0	3
45	Fluorous Hydroformylation. Topics in Current Chemistry, 2011, 308, 275-289.	4.0	13
46	Efficient Synthesis of Water-Soluble Alkyl-bis(<i>m</i> -sulfonated-phenyl)- and Dialkyl-(<i>m</i> -sulfonated-phenyl)-phosphines and Their Evaluation in Rhodium-Catalyzed Hydrogenation of Maleic Acid in Water. Organometallics, 2009, 28, 1593-1596.	1.1	19
47	Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass: From Sucrose to Levulinic Acid, I3-Valerolactone, 1,4-Pentanediol, 2-Methyl-tetrahydrofuran, and Alkanes. Topics in Catalysis, 2008, 48, 49-54.	1.3	427
48	εâ€Caprolactamium Hydrogen Sulfate: An Ionic Liquid Used for Decades in the Largeâ€5cale Production of εâ€Caprolactam. ChemSusChem, 2008, 1, 189-192.	3.6	29
49	γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals. Green Chemistry, 2008, 10, 238-242.	4.6	864
50	Oxidative Carbonylation of Methanol to Dimethyl Carbonate by Chlorine-Free Homogeneous and Immobilized 2,2'-Bipyrimidine Modified Copper Catalyst. Collection of Czechoslovak Chemical Communications, 2007, 72, 1094-1106.	1.0	20
51	Mechanism of the Pyridine-Modified Cobalt-Catalyzed Hydromethoxycarbonylation of 1,3-Butadiene. Organometallics, 2003, 22, 1582-1584.	1.1	30