Christian Röthel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6472542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Order in Cellulose Thin Films Prepared from a Trimethylsilyl Precursor. Biomacromolecules, 2020, 21, 653-659.	5.4	14
2	Alkyl chain assisted thin film growth of 2,7-dioctyloxy-benzothienobenzothiophene. Journal of Materials Chemistry C, 2019, 7, 8477-8484.	5.5	11
3	Epitaxial relation of carbamazepine and its precursor template extracted from rotating grazing incidence X-ray diffraction. Thin Solid Films, 2019, 683, 67-73.	1.8	1
4	<i>GIDVis</i> : a comprehensive software tool for geometry-independent grazing-incidence X-ray diffraction data analysis and pole-figure calculations. Journal of Applied Crystallography, 2019, 52, 683-689.	4.5	60
5	Stabilization of the Metastable Form I of Piracetam by Crystallization on Silicon Oxide Surfaces. Crystal Growth and Design, 2018, 18, 4123-4129.	3.0	4
6	Indexing of grazing-incidence X-ray diffraction patterns: the case of fibre-textured thin films. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 373-387.	0.1	19
7	Crystal alignment of caffeine deposited onto single crystal surfaces via hot-wall epitaxy. CrystEngComm, 2017, 19, 2936-2945.	2.6	4
8	Self-Limited Growth in Pentacene Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 11977-11984.	8.0	17
9	Solution of an elusive pigment crystal structure from a thin film: a combined X-ray diffraction and computational study. CrystEngComm, 2017, 19, 1902-1911.	2.6	15
10	Crystallization of Tyrian purple (6,6′-dibromoindigo) thin films: The impact of substrate surface modifications. Journal of Crystal Growth, 2016, 447, 73-79.	1.5	4
11	Surface-Induced Phase of Tyrian Purple (6,6′-Dibromoindigo): Thin Film Formation and Stability. Crystal Growth and Design, 2016, 16, 3647-3655.	3.0	15
12	Mixed side-chain geometries for aggregation control of poly(fluorene-alt-bithiophene) and their effects on photophysics and charge transport. Synthetic Metals, 2016, 220, 162-173.	3.9	8
13	Crystallization of Carbamazepine in Proximity to Its Precursor Iminostilbene and a Silica Surface. Crystal Growth and Design, 2016, 16, 2771-2778.	3.0	12
14	Alteration of texture and polymorph of phenytoin within thin films and its impact on dissolution. CrystEngComm, 2016, 18, 588-595.	2.6	7
15	Thin Film Phase and Local Chirality of Surface-Bound MOP4 Nanofibers. Journal of Physical Chemistry C, 2016, 120, 7653-7661.	3.1	11
16	Electrical Junctions: The Relationship between Structural and Electrical Characteristics in Perylenecarboxydiimideâ€Based Nanoarchitectures (Adv. Funct. Mater. 17/2015). Advanced Functional Materials, 2015, 25, 2482-2482.	14.9	0
17	Substrate-Induced Phase of a [1]Benzothieno[3,2- <i>b</i>]benzothiophene Derivative and Phase Evolution by Aging and Solvent Vapor Annealing. ACS Applied Materials & Interfaces, 2015, 7, 1868-1873.	8.0	54
18	Polymorphism of dioctyl-terthiophene within thin films: The role of the first monolayer. Chemical Physics Letters, 2015, 630, 12-17.	2.6	23

CHRISTIAN RöTHEL

#	Article	IF	CITATIONS
19	The Relationship between Structural and Electrical Characteristics in Perylenecarboxydiimideâ€Based Nanoarchitectures. Advanced Functional Materials, 2015, 25, 2501-2510.	14.9	25
20	Complex Behavior of Caffeine Crystallites on Muscovite Mica Surfaces. Crystal Growth and Design, 2015, 15, 4563-4570.	3.0	10
21	Idiosyncrasies of Physical Vapor Deposition Processes from Various Knudsen Cells for Quinacridone Thin Film Growth on Silicon Dioxide. Journal of Physical Chemistry C, 2015, 119, 20900-20910.	3.1	8
22	Surface-Induced Polymorphism as a Tool for Enhanced Dissolution: The Example of Phenytoin. Crystal Growth and Design, 2015, 15, 4687-4693.	3.0	27