Zhaoquan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/647254/publications.pdf

Version: 2024-02-01

623734 752698 33 453 14 20 citations g-index h-index papers 33 33 33 229 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanism on improved surface flashover performances in vacuum of epoxy resin using fluorocarbon plasma treatment. High Voltage, 2022, 7, 420-428.	4.7	20
2	lonization behavior of hairpin argon plasma jets resonantly generated by microwave pulses at atmospheric pressure. Scientia Sinica: Physica, Mechanica Et Astronomica, 2022, 52, 295211.	0.4	2
3	lonization process and distinctive characteristic of atmospheric pressure cold plasma jet driven resonantly by microwave pulses. Plasma Science and Technology, 2022, 24, 105401.	1.5	4
4	Role of charge accumulation in guided streamer evolution in helium DBD plasma jets. Scientific Reports, 2021, 11, 17286.	3.3	9
5	Transition from one-pass mode to stepwise propagation of a guided streamer along a helium plasma jet. Applied Physics Letters, 2021, 119, .	3.3	4
6	Study on discharge mode and transition mechanism of atmospheric pressure Ar/Zn pulsed microwave plasma jet. AlP Advances, 2021, 11 , .	1.3	4
7	Electron cyclotron resonance discharge enhancement in a cusped field thruster. Plasma Sources Science and Technology, 2021, 30, 09LT01.	3.1	7
8	Short-Circuit Failure Model of SiC MOSFET Including the Interface Trapped Charges. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 90-98.	5.4	14
9	Measurement of transient electron density of a pulsed microwave argon plasma jet via microwave Rayleigh scattering. Journal of Applied Physics, 2020, 128, .	2.5	13
10	A streamer behavior evolution during an applied voltage cycle in helium and argon atmospheric pressure plasma jets fed by DBD. Japanese Journal of Applied Physics, 2020, 59, SHHC03.	1.5	8
11	Development of a portable cold air plasma jet device and observation of its photo ionization process. Plasma Science and Technology, 2020, 22, 085403.	1.5	12
12	Stepwise propagation of a guided streamer along a DBD helium plasma jet fed by biased oscillating voltage. Applied Physics Letters, 2019, 114, .	3.3	17
13	Polarity Transition and Ionization Enhancement of Atmospheric Argon Plasma Jet Plumes Generated by Repetitive Microwave Pulses. IEEE Transactions on Plasma Science, 2019, 47, 4787-4794.	1.3	21
14	DC glow microdischarge with a self-determined length in helium and argon at atmospheric pressure. Journal of Applied Physics, 2018, 123, 083304.	2.5	4
15	Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes. Journal of Applied Physics, 2018, 123, .	2.5	17
16	Donut shape plasma jet plumes generated by microwave pulses even without air mole fractions. Journal of Applied Physics, 2017, 121, .	2.5	23
17	Bullet-shaped ionization front of plasma jet plumes driven by microwave pulses at atmospheric gas pressure. Journal of Applied Physics, 2017, 122, .	2.5	31
18	Investigation of the Arrayed Dielectric Barrier Discharge Reactor for PM2.5 Removal in Air. IEEE Transactions on Plasma Science, 2016, 44, 1341-1348.	1.3	7

#	Article	IF	CITATIONS
19	Study on hairpin-shaped argon plasma jets resonantly excited by microwave pulses at atmospheric pressure. Journal of Applied Physics, $2015, 118, .$	2.5	23
20	More Efficient Microwave Argon Plasma Jet With a Symmetric Hairpin Copper Wire at Atmospheric Pressure. IEEE Transactions on Plasma Science, 2015, 43, 906-907.	1.3	12
21	Atmospheric Plasma Jet Relay Driven by a 40-kHz Power Supply and Its Representative Characteristics. IEEE Transactions on Plasma Science, 2015, 43, 1825-1831.	1.3	11
22	Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet. Journal of Applied Physics, 2014, 116 , .	2.5	32
23	Longer Microwave Plasma Jet With Different Discharge Performances Originated by Plasma–Surface Interactions. IEEE Transactions on Plasma Science, 2014, 42, 2768-2769.	1.3	19
24	Study on Argon Plasma Jets at Atmospheric Pressure in Ambient Air Excited by Surface Waves. IEEE Transactions on Plasma Science, 2014, 42, 911-916.	1.3	15
25	Particle-in-cell/Monte Carlo collision simulation of the ionization process of surface-wave plasma discharges resonantly excited by surface plasmon polaritons. Physics of Plasmas, 2013, 20, .	1.9	18
26	Production of 30-mm Wide DC-Driven Brush-Shaped Cold Plasmas and Simulation on Its Discharge Process. IEEE Transactions on Plasma Science, 2013, 41, 1658-1663.	1.3	12
27	PIC/MCC Simulation of the Ionization Process for Filamentary Streamer Plasma Jet at Atmosphere Pressure in Argon. IEEE Transactions on Plasma Science, 2012, 40, 2861-2865.	1.3	33
28	Filamentary streamer discharges in argon at atmospheric pressure excited by surface plasmon polaritons. Review of Scientific Instruments, 2012, 83, 084701.	1.3	41
29	Theoretical analysis of surface microwave discharge resonantly excited by surface plasmon polaritons. , 2011, , .		0
30	Slot-array antenna devising for surface microwave discharge of surface plasmon polaritons., 2011,,.		3
31	Effect of wave-mode conversion device on production of large-area rectangular overdense surface-wave plasmas at the gas pressure about 100 Pa. Physics of Plasmas, 2011, 18, 013505.	1.9	17
32	Determination of the local electron density based on millimeter wave interferometry I: Theoretical analysis. , 2010 , , .		0
33	Determination of the local electron density based on millimeter wave interferometry II: Experimental operations and comparisons., 2010,,.		O