Hussein A Younus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6472347/publications.pdf

Version: 2024-02-01

42 papers

2,958 citations

304743

22

h-index

243625 44 g-index

50 all docs

50 docs citations

50 times ranked

4696 citing authors

#	Article	IF	CITATIONS
1	Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 2015, 44, 6804-6849.	38.1	1,190
2	Metal–organic molecular cages: applications of biochemical implications. Chemical Society Reviews, 2015, 44, 9-25.	38.1	310
3	Discrete metal-carboxylate self-assembled cages: Design, synthesis and applications. Coordination Chemistry Reviews, 2014, 280, 1-27.	18.8	164
4	Ruthenium Pincer Complexes: Synthesis and Catalytic Applications. Advanced Synthesis and Catalysis, 2015, 357, 283-330.	4.3	133
5	Ruthenium pincer complexes: Ligand design and complex synthesis. Coordination Chemistry Reviews, 2014, 276, 112-152.	18.8	129
6	Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives. Applied Energy, 2018, 211, 461-478.	10.1	126
7	Synthesis of 2D MOF having potential for efficient dye adsorption and catalytic applications. Catalysis Science and Technology, 2018, 8, 4010-4017.	4.1	90
8	Synthesis of a 2D copper(II)-carboxylate framework having ultrafast adsorption of organic dyes. Journal of Colloid and Interface Science, 2021, 602, 43-54.	9.4	61
9	Earth-abundant metal complexes as catalysts for water oxidation; is it homogeneous or heterogeneous?. Catalysis Science and Technology, 2015, 5, 4901-4925.	4.1	55
10	Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation. Journal of Materials Science and Technology, 2021, 83, 179-187.	10.7	52
11	A Robust Molecular Catalyst Generated Inâ€Situ for Photo―and Electrochemical Water Oxidation. ChemSusChem, 2017, 10, 862-875.	6.8	43
12	Highly active dinuclear cobalt complexes for solvent-free cycloaddition of CO ₂ to epoxides at ambient pressure. Chemical Communications, 2019, 55, 8274-8277.	4.1	40
13	New Insight into the Confinement Effect of Microporous Carbon in Li/Se Battery Chemistry: A Cathode with Enhanced Conductivity. Small, 2020, 16, e2000266.	10.0	40
14	O-Doping Boosts the Electrochemical Oxygen Reduction Activity of a Single Fe Site in Hydrophilic Carbon with Deep Mesopores. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45825-45831.	8.0	37
15	ONO pincer type ligand complexes of Al(III) as efficient catalyst for chemical fixation of CO2 to epoxides at atmospheric pressure. Journal of Catalysis, 2019, 377, 190-198.	6.2	34
16	Effect of synthesized mustard soap on the scheelite surface during flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 548, 108-116.	4.7	32
17	Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 1154-1163.	10.3	32
18	Development of Mixed metal Metal-organic polyhedra networks, colloids, and MOFs and their Pharmacokinetic applications. Scientific Reports, 2017, 7, 832.	3.3	28

#	Article	IF	CITATIONS
19	An overview of the characteristics of advanced binders for high-performance Li–S batteries. Nano Materials Science, 2020, , .	8.8	28
20	Chemical fixation of carbon dioxide catalyzed via cobalt (III) ONO pincer ligated complexes. Communications Chemistry, 2019, 2, .	4.5	26
21	Triazole based cobalt catalyst for CO2 insertion into epoxide at ambient pressure. Applied Catalysis A: General, 2020, 591, 117384.	4.3	26
22	Mono- and dinuclear organotin(IV) complexes for solvent free cycloaddition of CO2 to epoxides at ambient pressure. Journal of CO2 Utilization, 2018, 28, 313-318.	6.8	24
23	Cobalt salophen complexes for light-driven water oxidation. Catalysis Science and Technology, 2016, 6, 4271-4282.	4.1	22
24	Macrocyclic cyanocobalamin (vitamin B $<$ sub $>$ 12 $<$ /sub $>$) as a homogeneous electrocatalyst for water oxidation under neutral conditions. Chemical Communications, 2020, 56, 1968-1971.	4.1	22
25	CO ₂ insertion into epoxides using cesium salts as catalysts at ambient pressure. Catalysis Science and Technology, 2019, 9, 3868-3873.	4.1	18
26	Supported ionic liquid phase-boosted highly active and durable electrocatalysts towards hydrogen evolution reaction in acidic electrolyte. Journal of Energy Chemistry, 2021, 54, 342-351.	12.9	18
27	Chemical and photochemical water oxidation catalyzed by novel ruthenium complexes comprising a negatively charged NC ^{NHC} O ligand. Catalysis Science and Technology, 2017, 7, 387-395.	4.1	17
28	Direct Synthesis of the 2D Copper(II) 5â€Propâ€2â€ynoxyisophthalate MOF: Comment on "Surface Functionalization of Porous Coordination Nanocages Via Click Chemistry and Their Application in Drug Delivery― Advanced Materials, 2019, 31, e1801399.	21.0	17
29	Water Oxidation at Neutral pH using a Highly Active Copperâ€Based Electrocatalyst. ChemSusChem, 2020, 13, 5088-5099.	6.8	17
30	Understanding the Effect of Interplanar Space and Preintercalated Cations of Vanadate Cathode Materials on Potassium-Ion Battery Performance. ACS Applied Materials & English (2021), 13, 7377-7388.	8.0	17
31	Semi-closed synthesis of nitrogen and oxygen Co-doped mesoporous carbon for selective aqueous oxidation. Green Energy and Environment, 2022, 7, 43-52.	8.7	15
32	Progress of MOF-Derived Functional Materials Toward Industrialization in Solar Cells and Metal-Air Batteries. Catalysts, 2020, 10, 897.	3.5	15
33	Homogenous electrochemical water oxidation by a nickel(ii) complex based on a macrocyclic N-heterocyclic carbene/pyridine hybrid ligand. Catalysis Science and Technology, 2019, 9, 5651-5659.	4.1	14
34	Co-catalyst and solvent free nitrogen rich triazole based organocatalysts for cycloaddition of CO2 into epoxide. Molecular Catalysis, 2020, 493, 111071.	2.0	13
35	MXene supported transition metal nanoparticles accelerate sulfur reduction reaction kinetics. Journal of Materials Chemistry A, 2022, 10, 13758-13768.	10.3	11
36	Engineering of a highly stable metal-organic Co-film for efficient electrocatalytic water oxidation in acidic media. Materials Today Energy, 2020, 17, 100437.	4.7	9

#	Article	IF	CITATIONS
37	Synthesis and characterization of [Ru(NC ^{NHC} O)(bpy)L] ⁺ complexes and their reactivity towards water oxidation. New Journal of Chemistry, 2018, 42, 2476-2482.	2.8	7
38	Sacrificial ZnO nanorods drive N and O dual-doped carbon towards trifunctional electrocatalysts for Zn–air batteries and self-powered water splitting devices. Catalysis Science and Technology, 2021, 11, 4149-4161.	4.1	7
39	Chemical and Photochemical Water Oxidation by [RuCl(NC ^{<i>NHC</i>} O)(DMSO)(py)]â€√ype Complexes. ChemCatChem, 2017, 9, 2565-2573.	3.7	6
40	Ligand photodissociation in Ru($<$ scp $>$ ii $<$ /scp $>$)â \in "1,4,7-triazacyclononane complexes enhances water oxidation and enables electrochemical generation of surface active species. Catalysis Science and Technology, 2020, 10, 3399-3408.	4.1	4
41	Halfâ€sandwich ruthenium complex with a very low overpotential and excellent activity for water oxidation under acidic conditions. Applied Organometallic Chemistry, 2022, 36, .	3.5	2
42	A Convenient Synthesis of Novel Coumarin Derivatives with Anticipated Antimicrobial Activities. Heterocycles, 2017, 94, 2039.	0.7	1