
Wojciech Niedzwiedz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6471926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrinsic neural stem cell properties define brain hypersensitivity to genotoxic stress. Stem Cell Reports, 2022, , .	2.3	2
2	WASp modulates RPA function on single-stranded DNA in response to replication stress and DNA damage. Nature Communications, 2022, 13, .	5.8	13
3	EXD2 Protects Stressed Replication Forks and Is Required for Cell Viability in the Absence of BRCA1/2. Molecular Cell, 2019, 75, 605-619.e6.	4.5	26
4	SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature, 2018, 557, 57-61.	13.7	319
5	ATR Is a Therapeutic Target in Synovial Sarcoma. Cancer Research, 2017, 77, 7014-7026.	0.4	43
6	Structural Insight into BLM Recognition by TopBP1. Structure, 2017, 25, 1582-1588.e3.	1.6	24
7	MUS81 nuclease activity is essential for replication stress tolerance and chromosome segregation in BRCA2-deficient cells. Nature Communications, 2017, 8, 15983.	5.8	86
8	Mutations in CDC45 , Encoding an Essential Component of the Pre-initiation Complex, Cause Meier-Gorlin Syndrome and Craniosynostosis. American Journal of Human Genetics, 2016, 99, 125-138.	2.6	92
9	Activating ATR, the devil's in the dETAA1I. Nature Cell Biology, 2016, 18, 1120-1122.	4.6	5
10	The DNA fibre technique $\hat{a} \in$ " tracking helicases at work. Methods, 2016, 108, 92-98.	1.9	92
11	EXD2 - a new player joins the DSB resection team. Cell Cycle, 2016, 15, 1519-1520.	1.3	5
12	EXD2 promotes homologous recombination by facilitating DNA end resection. Nature Cell Biology, 2016, 18, 271-280.	4.6	61
13	BOD1L Is Required to Suppress Deleterious Resection of Stressed Replication Forks. Molecular Cell, 2015, 59, 462-477.	4.5	146
14	TopBP1 Interacts with BLM to Maintain Genome Stability but Is Dispensable for Preventing BLM Degradation. Molecular Cell, 2015, 57, 1133-1141.	4.5	59
15	TOPBP1 recruits TOP2A to ultra-fine anaphase bridges to aid in their resolution. Nature Communications, 2015, 6, 6572.	5.8	67
16	Sister chromatid decatenation: bridging the gaps in our knowledge. Cell Cycle, 2015, 14, 3040-3044.	1.3	14
17	The Fanconi Anemia Pathway Maintains Genome Stability by Coordinating Replication and Transcription. Molecular Cell, 2015, 60, 351-361.	4.5	283
18	BRCA2 Coordinates the Activities of Cell-Cycle Kinases to Promote Genome Stability. Cell Reports, 2014, 7, 1547-1559.	2.9	49

2

WOJCIECH NIEDZWIEDZ

#	Article	IF	CITATIONS
19	FANCJ couples replication past natural fork barriers with maintenance of chromatin structure. Journal of Cell Biology, 2013, 201, 33-48.	2.3	99
20	The DNA translocase activity of FANCM protects stalled replication forks. Human Molecular Genetics, 2012, 21, 2005-2016.	1.4	71
21	Visualization of DNA Replication in the Vertebrate Model System DT40 using the DNA Fiber Technique. Journal of Visualized Experiments, 2011, , e3255.	0.2	56
22	ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO Journal, 2010, 29, 806-818.	3.5	143
23	A novel ATRibute of FANCM. Cell Cycle, 2010, 9, 1453-1455.	1.3	0
24	The Walker B motif in avian FANCM is required to limit sister chromatid exchanges but is dispensable for DNA crosslink repair. Nucleic Acids Research, 2009, 37, 4360-4370.	6.5	71
25	Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair. Molecular Cell, 2007, 28, 798-809.	4.5	180
26	The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nature Structural and Molecular Biology, 2005, 12, 763-771.	3.6	182
27	"Dubâ€bing a tumor suppressor pathway. Cancer Cell, 2005, 7, 114-115.	7.7	5
28	The Fanconi Anaemia Gene FANCC Promotes Homologous Recombination and Error-Prone DNA Repair. Molecular Cell, 2004, 15, 607-620.	4.5	279