Tobias Feuchtinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6471633/publications.pdf

Version: 2024-02-01

91712 101384 5,198 136 36 69 citations g-index h-index papers 139 139 139 5894 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood, 2010, 116, 4360-4367.	0.6	409
2	Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. British Journal of Haematology, 2006, 134, 64-76.	1.2	368
3	The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. Journal of Allergy and Clinical Immunology, 2016, 137, 223-230.	1.5	247
4	Adoptive Transfer of Epstein-Barr Virus (EBV) Nuclear Antigen 1–Specific T Cells As Treatment for EBV Reactivation and Lymphoproliferative Disorders After Allogeneic Stem-Cell Transplantation. Journal of Clinical Oncology, 2013, 31, 39-48.	0.8	237
5	European guidelines for diagnosis and treatment of adenovirus infection in leukemia and stem cell transplantation: summary of ⟨scp⟩ECIL⟨/scp⟩â€4 (2011). Transplant Infectious Disease, 2012, 14, 555-563.	0.7	224
6	Improved immune recovery after transplantation of TCRαβ/CD19-depleted allografts from haploidentical donors in pediatric patients. Bone Marrow Transplantation, 2015, 50, S6-S10.	1.3	145
7	T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget, 2016, 7, 76902-76919.	0.8	131
8	Adoptive T-cell therapy with hexon-specific Th1 cells as a treatment of refractory adenovirus infection after HSCT. Blood, 2015, 125, 1986-1994.	0.6	127
9	Depletion of T-cell receptor alpha/beta and CD19 positive cells from apheresis products with the CliniMACS device. Cytotherapy, 2013, 15, 1253-1258.	0.3	125
10	Pediatric posttransplant relapsed/refractory B-precursor acute lymphoblastic leukemia shows durable remission by therapy with the T-cell engaging bispecific antibody blinatumomab. Haematologica, 2014, 99, 1212-1219.	1.7	125
11	Induction of a central memory and stem cell memory phenotype in functionally active CD4+ and CD8+ CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19+ acute lymphoblastic leukemia. Cancer Immunology, Immunotherapy, 2018, 67, 1053-1066.	2.0	116
12	Strategies of adoptive T -cell transfer to treat refractory viral infections post allogeneic stem cell transplantation. Journal of Hematology and Oncology, 2019, 12, 13.	6.9	111
13	Transplantation of <scp>CD</scp> 3/ <scp>CD</scp> 19 depleted allografts from haploidentical family donors in paediatric leukaemia. British Journal of Haematology, 2014, 165, 688-698.	1.2	109
14	Isolation and expansion of human adenovirus–specific CD4+ and CD8+ T cells according to IFN-γ secretion for adjuvant immunotherapy. Experimental Hematology, 2004, 32, 282-289.	0.2	105
15	Detection of adenovirus-specific T cells in children with adenovirus infection after allogeneic stem cell transplantation. British Journal of Haematology, 2005, 128, 503-509.	1.2	101
16	Long-term outcome after haploidentical stem cell transplantation in children. Blood Cells, Molecules, and Diseases, 2004, 33, 281-287.	0.6	99
17	Pneumococcal conjugate vaccine provides early protective antibody responses in children after related and unrelated allogeneic hematopoietic stem cell transplantation. Blood, 2007, 109, 2322-2326.	0.6	97
18	Clinical Grade Generation of Hexon-specific T Cells for Adoptive T-cell Transfer as a Treatment of Adenovirus Infection After Allogeneic Stem Cell Transplantation. Journal of Immunotherapy, 2008, 31, 199-206.	1.2	96

#	Article	IF	CITATIONS
19	Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood, 2020, 136, 1407-1418.	0.6	91
20	Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors. British Journal of Haematology, 2004, 124, 72-79.	1,2	86
21	Haploidentical Stem Cell Transplantation in Patients with Pediatric Solid Tumors: Preliminary Results of a Pilot Study and Analysis of Graft versus Tumor Effects. Klinische Padiatrie, 2006, 218, 321-326.	0.2	79
22	Reconstitution of natural killer cell receptors influences natural killer activity and relapse rate after haploidentical transplantation of T- and B-cell depleted grafts in children. Haematologica, 2010, 95, 1381-1388.	1.7	79
23	Outcome of hematopoietic cell transplantation for DNA double-strand break repair disorders. Journal of Allergy and Clinical Immunology, 2018, 141, 322-328.e10.	1.5	79
24	A Comparison between Three Graft Manipulation Methods for Haploidentical Stem Cell Transplantation in Pediatric Patients: Preliminary Results of a Pilot Study. Klinische Padiatrie, 2005, 217, 334-338.	0.2	76
25	Adenovirus infection after allogeneic stem cell transplantation. Leukemia and Lymphoma, 2007, 48, 244-255.	0.6	72
26	Feasibility and Outcome of Reducedâ€Intensity Conditioning in Haploidentical Transplantation. Annals of the New York Academy of Sciences, 2007, 1106, 279-289.	1.8	66
27	Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. Science Advances, 2021, 7, .	4.7	56
28	Haploidentical Stem Cell Transplantation for Refractory/Relapsed Neuroblastoma. Biology of Blood and Marrow Transplantation, 2018, 24, 1005-1012.	2.0	55
29	Chimeric CD19 antibody mediates cytotoxic activity against leukemic blasts with effector cells from pediatric patients who received T-cell–depleted allografts. Blood, 2004, 103, 3982-3985.	0.6	53
30	Immune reconstitution and strategies for rebuilding the immune system after haploidentical stem cell transplantation. Annals of the New York Academy of Sciences, 2012, 1266, 161-170.	1.8	51
31	Viral Infections in Immunocompromised Patients. Biology of Blood and Marrow Transplantation, 2011, 17, S2-S5.	2.0	50
32	Monocyte-Induced Development of Th17 Cells and the Release of S100 Proteins Are Involved in the Pathogenesis of Graft-versus-Host Disease. Journal of Immunology, 2014, 193, 3355-3365.	0.4	49
33	CLEC12A and CD33 coexpression as a preferential target for pediatric AML combinatorial immunotherapy. Blood, 2021, 137, 1037-1049.	0.6	45
34	Immunological long-term follow-up of neuroblastoma stage IV patients after anti-GD2 CH14.18 antibody treatment Journal of Clinical Oncology, 2015, 33, 3029-3029.	0.8	45
35	Intensity of HLA class I expression and KIR-mismatch determine NK-cell mediated lysis of leukaemic blasts from children with acute lymphatic leukaemia. British Journal of Haematology, 2007, 138, 97-100.	1.2	42
36	Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL–USP2 fusions. Leukemia, 2019, 33, 2306-2340.	3.3	41

#	Article	IF	CITATIONS
37	CD34 ⁺ selected stem cell boosts can improve poor graft function after paediatric allogeneic stem cell transplantation. British Journal of Haematology, 2018, 180, 90-99.	1.2	39
38	Flow cytometry with anti HLA-antibodies: a simple but highly sensitive method for monitoring chimerism and minimal residual disease after HLA-mismatched stem cell transplantation. Bone Marrow Transplantation, 2007, 39, 767-773.	1.3	38
39	Chronic graft-versus-host-disease in CD34+-humanized NSG mice is associated with human susceptibility HLA haplotypes for autoimmune disease. Journal of Autoimmunity, 2015, 62, 55-66.	3.0	38
40	Blinatumomab in pediatric patients with relapsed/refractory Bâ€ell precursor acute lymphoblastic leukemia. European Journal of Haematology, 2021, 106, 473-483.	1.1	38
41	Efficacy, safety and feasibility of antifungal prophylaxis with posaconazole tablet in paediatric patients after haematopoietic stem cell transplantation. Journal of Cancer Research and Clinical Oncology, 2017, 143, 1281-1292.	1.2	35
42	T-cell replete haploidentical bone marrow transplantation and post-transplant cyclophosphamide for patients with inborn errors. Haematologica, 2019, 104, e478-e482.	1.7	34
43	Adenoviral Infections after Transplantation of Positive Selected Stem Cells from Haploidentical Donors in Children: An Update. Klinische Padiatrie, 2005, 217, 339-344.	0.2	33
44	Adoptive T Cell Therapy Strategies for Viral Infections in Patients Receiving Haematopoietic Stem Cell Transplantation. Cells, 2019, 8, 47.	1.8	32
45	Leukemia-induced dysfunctional TIM-3+CD4+ bone marrow T cells increase risk of relapse in pediatric B-precursor ALL patients. Leukemia, 2020, 34, 2607-2620.	3.3	31
46	Targeted TÂcell receptor gene editing provides predictable TÂcell product function for immunotherapy. Cell Reports Medicine, 2021, 2, 100374.	3.3	30
47	Treatment of graft failure with <scp>TNI</scp> â€based reconditioning and haploidentical stem cells in paediatric patients. British Journal of Haematology, 2016, 175, 115-122.	1.2	29
48	Reduced toxicity, myeloablative HLA-haploidentical hematopoietic stem cell transplantation with post-transplantation cyclophosphamide for sickle cell disease. Annals of Hematology, 2017, 96, 1373-1377.	0.8	26
49	Rituximab mediates in vitro antileukemic activity in pediatric patients after allogeneic transplantation. Bone Marrow Transplantation, 2005, 36, 91-97.	1.3	25
50	Cytolytic activity of NK cell clones against acute childhood precursor-B-cell leukaemia is influenced by HLA class I expression on blasts and the differential KIR phenotype of NK clones. Bone Marrow Transplantation, 2009, 43, 875-881.	1.3	25
51	Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy. Cytotherapy, 2019, 21, 973-986.	0.3	25
52	Association between adenovirus viral load and mortality in pediatric allo-HCT recipients: the multinational AdVance study. Bone Marrow Transplantation, 2019, 54, 1632-1642.	1.3	25
53	Determination of residual T- and B-cell content after immunomagnetic depletion: proposal for flow cytometric analysis and results from 103 separations. Cytotherapy, 2006, 8, 465-472.	0.3	23
54	Natural killer cell activity influences outcome after T cell depleted stem cell transplantation from matched unrelated and haploidentical donors. Best Practice and Research in Clinical Haematology, 2011, 24, 403-411.	0.7	22

#	Article	IF	CITATIONS
55	Rapid generation of NY-ESO-1-specific CD4 ⁺ T _{HELPER} 1 cells for adoptive T-cell therapy. Oncolmmunology, 2015, 4, e1002723.	2.1	20
56	Treatment with omalizumab normalizes the number of myeloid dendritic cells during the grass pollen season. Journal of Allergy and Clinical Immunology, 2003, 111, 428-430.	1.5	19
57	Adoptive T-cell Transfer for Refractory Viral Infections with Cytomegalovirus, Epstein-Barr Virus or Adenovirus after Allogeneic Stem Cell Transplantation. Klinische Padiatrie, 2013, 225, 164-169.	0.2	19
58	Results of CoALL 07-03 study childhood ALL based on combined risk assessment by in vivo and in vitro pharmacosensitivity. Blood Advances, 2019, 3, 3688-3699.	2.5	19
59	Ex vivo detection of adenovirus specific CD4+ T-cell responses to HLA-DR-epitopes of the Hexon protein show a contracted specificity of THELPER cells following stem cell transplantation. Virology, 2010, 397, 277-284.	1.1	18
60	Dendritic cell vaccination in an allogeneic stem cell recipient receiving a transplant from a human cytomegalovirus (HCMV)-seronegative donor: induction of a HCMV-specific Thelper cell response. Cytotherapy, 2010, 12, 945-950.	0.3	18
61	Reduction of Minimal Residual Disease in Pediatric B-lineage Acute Lymphoblastic Leukemia by an Fc-optimized CD19 Antibody. Molecular Therapy, 2016, 24, 1634-1643.	3.7	18
62	The role of haematopoietic stem cell transplantation for sickle cell disease in the era of targeted disease-modifying therapies and gene editing. Lancet Haematology,the, 2020, 7, e902-e911.	2.2	18
63	Cellular Immune Reconstitution after Haploidentical Transplantation in Children. Biology of Blood and Marrow Transplantation, 2008, 14, 59-65.	2.0	17
64	Long-term IL-2 therapy after transplantation of T cell depleted stem cells from alternative donors in children. Best Practice and Research in Clinical Haematology, 2011, 24, 443-452.	0.7	17
65	Identification of a Novel Immunodominant HLA-B*07. Journal of Immunotherapy, 2015, 38, 267-275.	1.2	17
66	Posaconazole plasma concentration in pediatric patients receiving antifungal prophylaxis after allogeneic hematopoietic stem cell transplantation. Medical Mycology, 2016, 54, 128-137.	0.3	17
67	CRISPR-Cas9-Mediated Glucocorticoid Resistance in Virus-Specific T Cells for Adoptive T Cell Therapy Posttransplantation. Molecular Therapy, 2020, 28, 1965-1973.	3.7	17
68	Augmenting anti-CD19 and anti-CD22 CAR T-cell function using PD-1-CD28 checkpoint fusion proteins. Blood Cancer Journal, 2021, 11, 108.	2.8	17
69	MRD response in a refractory paediatric T-ALL patient through anti-programmed cell death 1 (PD-1) Ab treatment associated with induction of fatal GvHD. Bone Marrow Transplantation, 2017, 52, 1221-1224.	1.3	16
70	Systematic identification of cancer-specific MHC-binding peptides with RAVEN. Oncolmmunology, 2018, 7, e1481558.	2.1	16
71	Presence of centromeric but absence of telomeric group B KIR haplotypes in stem cell donors improve leukaemia control after HSCT for childhood ALL. Bone Marrow Transplantation, 2019, 54, 1847-1858.	1.3	16
72	Five donors–one recipient: modeling a mosaic of granulocytes, natural killer and T cells from cord-blood and third-party donors. Nature Clinical Practice Oncology, 2008, 5, 291-295.	4.3	15

#	Article	IF	CITATIONS
73	Favorable NK cell activity after haploidentical hematopoietic stem cell transplantation in stage IV relapsed Ewing's sarcoma patients. Bone Marrow Transplantation, 2015, 50, S72-S76.	1.3	15
74	Outcomes of pediatric identical livingâ€donor liver and hematopoietic stem cell transplantation. Pediatric Transplantation, 2016, 20, 888-897.	0.5	15
75	Dynamics of the Emergence of a Human Cytomegalovirus UL97 Mutant Strain Conferring Ganciclovir Resistance in a Pediatric Stem-Cell Transplant Recipient. Journal of Molecular Diagnostics, 2009, 11, 364-368.	1.2	13
76	Posaconazole plasma concentrations in pediatric patients receiving antifungal prophylaxis during neutropenia. Medical Mycology, 2016, 55, myw091.	0.3	13
77	Ferritin as an early marker of graft rejection after allogeneic hematopoietic stem cell transplantation in pediatric patients. Annals of Hematology, 2016, 95, 311-323.	0.8	13
78	Consensus of German Transplant Centers on Hematopoietic Stem Cell Transplantation in Fanconi Anemia. Klinische Padiatrie, 2015, 227, 157-165.	0.2	11
79	CD3/CD19 Depleted Grafts for Haploidentical Stem Cell Transplantation in Children: Results of a Pilot Study Blood, 2006, 108, 3121-3121.	0.6	11
80	Antiviral activity against CMV-infected fibroblasts in pediatric patients transplanted with CD34+-selected allografts from alternative donors. Human Immunology, 2004, 65, 423-431.	1.2	10
81	Alloreactivity of Natural Killer Cell Clones Against Childhood Precursor-B Lymphoblastic Leukemia Cells Is Determined by Differential KIR Expression Blood, 2006, 108, 3691-3691.	0.6	10
82	Defined Central Memory and Stem Memory T Cell Phenotype of CD4 and CD8 CAR T Cells for the Treatment of CD19+ Acute Lymphoblastic Leukemia in an Automated Closed System. Blood, 2016, 128, 4558-4558.	0.6	9
83	Multimodal Treatment of Nasopharyngeal Carcinoma in Children, Adolescents and Young Adults-Extended Follow-Up of the NPC-2003-GPOH Study Cohort and Patients of the Interim Cohort. Cancers, 2022, 14, 1261.	1.7	9
84	Long-Term Remission After First-Line Single-Agent Treatment with Arsenic Trioxide of Relapsed Acute Promyelocytic Leukemia in an 8-Year-Old Boy. Pediatric Hematology and Oncology, 2011, 28, 334-337.	0.3	8
85	Daunorubicin during delayed intensification decreases the incidence of infectious complications – a randomized comparison in trial CoALL 08-09. Leukemia and Lymphoma, 2019, 60, 60-68.	0.6	8
86	Design and Evaluation of TIM-3-CD28 Checkpoint Fusion Proteins to Improve Anti-CD19 CAR T-Cell Function. Frontiers in Immunology, 2022, 13, 845499.	2.2	8
87	Dendritic cells are susceptible to infection with wild-type adenovirus, inducing a differentiation arrest in precursor cells and inducing a strong T-cell stimulation. Journal of General Virology, 2010, 91, 1150-1154.	1.3	7
88	Children with Relapsed or Refractory Nephroblastoma: Favorable Long-term Survival after High-dose Chemotherapy and Autologous Stem Cell Transplantation. Klinische Padiatrie, 2014, 226, 351-356.	0.2	7
89	Leukemia escape in immune desert: intraocular relapse of pediatric pro-B-ALL during systemic control by CD19-CAR T cells. , 2020, 8, e001052.		7
90	Venetoclax and decitabine for relapsed paediatric myelodysplastic syndromeâ€related acute myeloid leukaemia with complex aberrant karyotype after second stem cell transplantation. British Journal of Haematology, 2020, 189, e251-e254.	1.2	7

#	Article	IF	CITATIONS
91	Induction of Thelper1-driven Antiviral T-cell Lines for Adoptive Immunotherapy Is Determined by Differential Expression of IFN- \hat{I}^3 and T-cell Activation Markers. Journal of Immunotherapy, 2012, 35, 661-669.	1.2	6
92	Antiâ€leukaemic activity of a novel haploidenticalâ€transplantation approach employing unmanipulated bone marrow followed by <scp>CD</scp> 6â€depleted peripheral blood stem cells in children with refractory/relapsed acute leukaemia. British Journal of Haematology, 2013, 162, 802-807.	1.2	6
93	Health-Related Physical Fitness and Arterial Stiffness in Childhood Cancer Survivors. Frontiers in Cardiovascular Medicine, 2019, 6, 63.	1.1	6
94	Haploidentical stem cell transplantation and subsequent immunotherapy with antiGD2 antibody for patients with relapsed metastatic neuroblastoma Journal of Clinical Oncology, 2015, 33, 10056-10056.	0.8	6
95	Analysis of selfâ€reported activities of daily living, motor performance and physical activity among children and adolescents with cancer: Baseline data from a randomised controlled trial assessed shortly after diagnosis of leukaemia or nonâ€Hodgkin lymphoma. European Journal of Cancer Care, 2022. 31. e13559.	0.7	6
96	Ex vivo expansion of autologous, donor-derived NK-, γÎT-, and cytokine induced killer (CIK) cells post haploidentical hematopoietic stem cell transplantation results in increased antitumor activity. Bone Marrow Transplantation, 2019, 54, 727-732.	1.3	5
97	Anti-CD19 CARs displayed at the surface of lentiviral vector particles promote transduction of target-expressing cells. Molecular Therapy - Methods and Clinical Development, 2021, 21, 42-53.	1.8	5
98	Genomeâ€wide offâ€target analyses of CRISPR/Cas9â€mediated Tâ€cell receptor engineering in primary human T cells. Clinical and Translational Immunology, 2022, 11, e1372.	1.7	5
99	Clofarabine increases the eradication of minimal residual disease of primary B-precursor acute lymphoblastic leukemia compared to high-dose cytarabine without improvement of outcome. Results from the randomized clinical trial 08-09 of the Cooperative Acute Lymphoblastic Leukemia Study Group, Haematologica, 2022, 107, 1026-1033.	1.7	4
100	Favorable immune recovery and low rate of GvHD in children transplanted with partially T cell-depleted PBSC grafts. Bone Marrow Transplantation, 2019, 54, 53-62.	1.3	3
101	Efficacy, safety and feasibility of fosaprepitant for the prevention of chemotherapy-induced nausea and vomiting in pediatric patients receiving moderately and highly emetogenic chemotherapy – results of a non-interventional observation study. BMC Cancer, 2019, 19, 1118.	1.1	3
102	CMV: persistent nemesis for SCT. Blood, 2016, 127, 2368-2369.	0.6	2
103	Protective TÂcell receptor identification for orthotopic reprogramming of immunity in refractory virus infections. Molecular Therapy, 2022, 30, 198-208.	3.7	2
104	T-cell immunity: strength out of quiescence?. Blood, 2017, 129, 663-664.	0.6	1
105	KTE-C19 (anti-CD19 chimeric antigen receptor [CAR] T cell therapy) in pediatric and adolescent patients with relapsed/refractory acute lymphoblastic leukemia (R/R ALL): Preliminary Results of ZUMA-4. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S252-S253.	0.2	1
106	<p>Antiemetic Prophylaxis with Fosaprepitant and 5-HT₃-Receptor Antagonists in Pediatric Patients Undergoing Autologous Hematopoietic Stem Cell Transplantation</p> . Drug Design, Development and Therapy, 2020, Volume 14, 3915-3927.	2.0	1
107	Identification of Predictive Markers of Severe and Prolonged Neutropenia after CD19-Specific CAR T-Cell Treatment in Patients with Relapsed/Refractory B-Cell Malignancies. Blood, 2020, 136, 41-42.	0.6	1
108	Transplantation Of $TcR\hat{l}\pm\hat{l}^2/CD19$ Depleted Stem Cells From Haploidentical Donors In Children: Current Results. Blood, 2013, 122, 692-692.	0.6	1

#	Article	IF	CITATIONS
109	Leukemia Related Co-Stimulation / Co-Inhibition Predict T-Cell Attack of Acute Lymphoblastic Leukemia Mediated By Blinatumomab. Blood, 2015, 126, 3764-3764.	0.6	1
110	Adoptive Transfer of Hexon-Specific T-Cells as a Treatment of Adenovirus Reactivation Following Allogeneic Stem Cell Transplantation Blood, 2009, 114, 796-796.	0.6	1
111	Immunological recovery following HLAâ€matched CD3+ TCR αß+/CD19+ depleted hematopoietic stem cell transplantation in children. Pediatric Transplantation, 2022, , e14285.	0.5	1
112	The Potential Role of Natural Killer Cells in the Treatment of Malignant Disease., 2008,, 352-362.		0
113	Susceptibility to childhood leukemia. Blood, 2011, 118, 1189-1190.	0.6	0
114	Differential expression of T _{HELPER} 1 cytokines upon antigen stimulation predicts <i>ex vivo</i> proliferative potential and cytokine production of virusâ€specific T cells following reâ€stimulation. Transplant Infectious Disease, 2014, 16, 713-723.	0.7	0
115	Transplantation of Haploidentical CD3/CD19 Depleted Stem Cells in Children: Final Results of a Multicenter Phase I/II Study. Biology of Blood and Marrow Transplantation, 2016, 22, S62.	2.0	0
116	T-Cell Replete Haploidentical Bone Marrow Transplantation and Post-Transplant Cyclophosphamide for Patients with Inborn Errors. Biology of Blood and Marrow Transplantation, 2020, 26, S212.	2.0	0
117	Improved Immune Reconstitution with Low Incidence of Severe Graft-Versus-Host Disease after Transplantation of CD34+ or CD133+ Enriched Stem Cells with Add-Back of Ten Million T-Cells Per Kg Blood, 2004, 104, 1239-1239.	0.6	0
118	Transplantation of Positive Selected Peripheral Stem Cells with Add-Back of T Cells from Unrelated Donors in Children: Favourable Survival and Low Incidence of GvHD Blood, 2006, 108, 2900-2900.	0.6	0
119	Quantitative HLA Class I Expression and KIR-Mismatch between NK-Cell-Donor and Patient Predict NK Cell Mediated Lysis of Leukemic Cells from Children with Acute Lymphatic Leukemia Blood, 2006, 108, 5205-5205.	0.6	0
120	Hexon Specific T-Cells for Adoptive T-Cell Transfer as a Treatment of Adenovirus Infection after Allogeneic Stem Cell Transplantation Blood, 2006, 108, 2853-2853.	0.6	0
121	Co-Transfusion of Donor NK Cells in Haploidentical Stem Cell Transplantation. Blood, 2008, 112, 2907-2907.	0.6	0
122	Long Term Survival and Relapse Rate After Transplantation of Highly T and B Cell Depleted Stem Cells From Alternative Donors in Pediatric Patients with Acute Lymphatic Leukemia Blood, 2009, 114, 4333-4333.	0.6	0
123	Improved T Cell Recovery After Transplantation of CD3/CD19 depleted Haploidentical Stem Cell Grafts in Pediatric Patients Blood, 2009, 114, 4652-4652.	0.6	0
124	Reduced Risk of Relapse In Pediatric ALL After Haploidentical Transplantation of T-Cell Depleted Grafts From KIR Haplotype B Donors,. Blood, 2011, 118, 4133-4133.	0.6	0
125	Involvement Of S100 Proteins and Hsp90 In The Pathogenesis Of Graft-Versus-Host Disease After Allogeneic Hematopoetic Cell Transplantation. Blood, 2013, 122, 2058-2058.	0.6	0
126	NY-ESO-1 specific CD4 ⁺ T _{helper} 1 cells for immunotherapy of cancer Journal of Clinical Oncology, 2014, 32, 3071-3071.	0.8	0

#	Article	IF	CITATIONS
127	Senescence induction in human melanoma by the combined action of type II interferon and tumor necrosis factor Journal of Clinical Oncology, 2014, 32, e22213-e22213.	0.8	0
128	Improved Immune Recovery after Transplantation of $TCR\hat{i}\pm\hat{i}^2/CD19$ Depleted Allografts from Haploidentical Donors in Pediatric Patients. Blood, 2014, 124, 852-852.	0.6	0
129	Generation of specific polyclonal and polyfunctional CD4 ⁺ T-helper1 cells against WT-1, MAGE-A3, Survivin and ROR-1 for adoptive T-cell immunotherapy Journal of Clinical Oncology, 2015, 33, e14025-e14025.	0.8	0
130	Pharmacokinetic Analysis during Antifungal Prophylaxis with Posaconazole Suspension in Pediatric and Adolescent Patients after Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2015, 126, 4338-4338.	0.6	0
131	Bone Marrow T Cells Are Driven into Exhaustion By Acute Leukemia in Pediatric Patients Based on Protein and Transcriptome Analysis. Blood, 2018, 132, 3722-3722.	0.6	0
132	TIM-3 Expression on CD4+ Bone Marrow T Cells Predicts Relapse of Pediatric B-Precursor Acute Lymphoblastic Leukemia. Blood, 2018, 132, 2833-2833.	0.6	0
133	Abstract A043: Anti-CD19 CAR T-cells with a CRISPR/Cas9-mediated T-cell receptor knockout show high functionality in the absence of alloreactivity in vitro. , 2019, , .		0
134	Abstract A224: Bone marrow T-cells are tumor-infiltrating T-cells in pediatric patients with acute leukemia and their phenotype reflects immune evasion of leukemic blasts., 2019,,.		0
135	A Phase I Open Label Dose Escalation Study of MB-CART19.1 in Relapsed and Refractory CD19+ B Cell Malignancies, Interim Preliminary Results in Pediatric ALL, Adult ALL Including CLL Cohorts. Blood, 2021, 138, 3836-3836.	0.6	0
136	Clofarabine Significantly Increases Eradication of Minimal Residual Disease of B-Precursor ALL Compared to High-Dose Cytarabine in Randomized Trial Coall 08-09. Blood, 2020, 136, 21-21.	0.6	0