
Francesco Clemente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6471190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The myokinetic stimulation interface: activation of proprioceptive neural responses with remotely actuated magnets implanted in rodent forelimb muscle. Journal of Neural Engineering, 2022, 19, 026048.	3.5	3
2	Effects of Sensor Resolution and Localization Rate on the Performance of a Myokinetic Control Interface. IEEE Sensors Journal, 2021, 21, 22603-22611.	4.7	6
3	Proprioceptive Augmentation With Illusory Kinaesthetic Sensation in Stroke Patients Improves Movement Quality in an Active Upper Limb Reach-and-Point Task. Frontiers in Neurorobotics, 2021, 15, 610673.	2.8	7
4	Localization accuracy of multiple magnets in a myokinetic control interface. Scientific Reports, 2021, 11, 4850.	3.3	11
5	Feasibility of generating 90ÂHz vibrations in remote implanted magnets. Scientific Reports, 2021, 11, 15456.	3.3	5
6	Feasibility of Tracking Multiple Implanted Magnets With a Myokinetic Control Interface: Simulation and Experimental Evidence Based on the Point Dipole Model. IEEE Transactions on Biomedical Engineering, 2020, 67, 1282-1292.	4.2	20
7	The Myokinetic Control Interface: How Many Magnets Can be Implanted in an Amputated Forearm? Evidence From a Simulated Environment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2451-2458.	4.9	10
8	Neural feedback strategies to improve grasping coordination in neuromusculoskeletal prostheses. Scientific Reports, 2020, 10, 11793.	3.3	49
9	Intracortical Microstimulation Feedback Improves Grasp Force Accuracy in a Human Using a Brain-Computer Interface. , 2020, 2020, 3355-3358.		7
10	Online Grasp Force Estimation From the Transient EMG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2333-2341.	4.9	21
11	Grasp force estimation from the transient EMG using high-density surface recordings. Journal of Neural Engineering, 2020, 17, 016052.	3.5	32
12	Hand Control With Invasive Feedback Is Not Impaired by Increased Cognitive Load. Frontiers in Bioengineering and Biotechnology, 2020, 8, 287.	4.1	31
13	Development of an Embedded Myokinetic Prosthetic Hand Controller. Sensors, 2019, 19, 3137.	3.8	13
14	Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 49.	4.6	44
15	Intraneural sensory feedback restores grip force control and motor coordination while using a prosthetic hand. Journal of Neural Engineering, 2019, 16, 026034.	3.5	66
16	Sixâ€Month Assessment of a Hand Prosthesis with Intraneural Tactile Feedback. Annals of Neurology, 2019, 85, 137-154.	5.3	140
17	The preload force affects the perception threshold of muscle vibration-induced movement illusions. Experimental Brain Research, 2019, 237, 111-120.	1.5	12
18	Grasp Force Estimation from HD-EMG Recordings with Channel Selection Using Elastic Nets:		3

Preliminary Study. , 2018, , .

FRANCESCO CLEMENTE

#	Article	IF	CITATIONS
19	Biomimetic Intraneural Sensory Feedback Enhances Sensation Naturalness, Tactile Sensitivity, and Manual Dexterity in a Bidirectional Prosthesis. Neuron, 2018, 100, 37-45.e7.	8.1	265
20	Discrete Vibro-Tactile Feedback Prevents Object Slippage in Hand Prostheses More Intuitively Than Other Modalities. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1577-1584.	4.9	36
21	The SSSA-MyHand: A Dexterous Lightweight Myoelectric Hand Prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 459-468.	4.9	94
22	Touch and Hearing Mediate Osseoperception. Scientific Reports, 2017, 7, 45363.	3.3	22
23	A cosmetic prosthetic digit with bioinspired embedded touch feedback. , 2017, 2017, 1136-1141.		8
24	The myokinetic control interface: tracking implanted magnets as a means for prosthetic control. Scientific Reports, 2017, 7, 17149.	3.3	42
25	Humans Can Integrate Augmented Reality Feedback in Their Sensorimotor Control of a Robotic Hand. IEEE Transactions on Human-Machine Systems, 2017, 47, 583-589.	3.5	42
26	Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 1314-1322.	4.9	170
27	Vibrotactile Stimulation Promotes Embodiment of an Alien Hand in Amputees With Phantom Sensations. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 450-457.	4.9	94
28	Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand. Experimental Brain Research, 2014, 232, 3421-3429.	1.5	70
29	A novel device for multi-modal sensory feedback in hand prosthetics: Design and preliminary prototype. , 2014, , .		7