Brahim Chaqour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6470914/publications.pdf

Version: 2024-02-01

47 papers

1,594 citations

257450 24 h-index 302126 39 g-index

49 all docs 49 docs citations

49 times ranked 2013 citing authors

#	Article	IF	CITATIONS
1	Selective Upregulation of SIRT1 Expression in Retinal Ganglion Cells by AAV-Mediated Gene Delivery Increases Neuronal Cell Survival and Alleviates Axon Demyelination Associated with Optic Neuritis. Biomolecules, 2022, 12, 830.	4.0	9
2	Role of Erythropoietin Receptor Signaling in Macrophages or Choroidal Endothelial Cells in Choroidal Neovascularization. Biomedicines, 2022, 10, 1655.	3.2	0
3	Active Rap1â€mediated inhibition of choroidal neovascularization requires interactions with IQGAP1 in choroidal endothelial cells. FASEB Journal, 2021, 35, e21642.	0.5	3
4	The CCN2/CTGF interactome: an approach to understanding the versatility of CCN2/CTGF molecular activities. Journal of Cell Communication and Signaling, 2021, 15, 567-580.	3.4	18
5	Caught between a "Rho―and a hard place: are CCN1/CYR61 and CCN2/CTGF the arbiters of microvascular stiffness?. Journal of Cell Communication and Signaling, 2020, 14, 21-29.	3.4	30
6	A CTGF-YAP Regulatory Pathway Is Essential for Angiogenesis and Barriergenesis in the Retina. IScience, 2020, 23, 101184.	4.1	33
7	Eyeing the Extracellular Matrix in Vascular Development and Microvascular Diseases and Bridging the Divide between Vascular Mechanics and Function. International Journal of Molecular Sciences, 2020, 21, 3487.	4.1	13
8	CCN1 \hat{a} e"Yes-Associated Protein Feedback Loop Regulates Physiological and Pathological Angiogenesis. Molecular and Cellular Biology, 2019, 39, .	2.3	19
9	Interplay between the Yesâ€Associated protein and the matricellular protein CCN1 Regulates the phenotypical plasticity of endothelial cells in developing blood vessels. FASEB Journal, 2019, 33, 644.1.	0.5	O
10	Abscisic acid: an antiangiogenic phytohormone that modulates the phenotypical plasticity of endothelial cells and macrophages. Journal of Cell Science, $2018,131,.$	2.0	8
11	Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy. Scientific Reports, 2017, 7, 1405.	3.3	26
12	Analysis of CCN Protein Expression and Activities in Vasoproliferative Retinopathies. Methods in Molecular Biology, 2017, 1489, 543-556.	0.9	7
13	Per2-Mediated Vascular Dysfunction Is Caused by the Upregulation of the Connective Tissue Growth Factor (CTGF). PLoS ONE, 2016, 11, e0163367.	2.5	12
14	Regulating the regulators of angiogenesis by CCN1 and taking it up a Notch. Journal of Cell Communication and Signaling, 2016, 10, 259-261.	3.4	9
15	Eyeing the Cyr61/CTGF/NOV (CCN) group of genes in development and diseases: highlights of their structural likenesses and functional dissimilarities. Human Genomics, 2015, 9, 24.	2.9	60
16	The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling. Development (Cambridge), 2015, 142, 2364-74.	2.5	47
17	Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia. Journal of Biological Chemistry, 2015, 290, 23264-23281.	3.4	61
18	miR-92a Corrects CD34+ Cell Dysfunction in Diabetes by Modulating Core Circadian Genes Involved in Progenitor Differentiation. Diabetes, 2015, 64, 4226-4237.	0.6	27

#	Article	IF	Citations
19	Endothelial Deficiency of the Extracellular Matrix Protein CCN1 Alters Developmental and Pathological Angiogenesis. FASEB Journal, 2015, 29, 719.2.	0.5	O
20	MicroRNA signature and function in retinal neovascularization. World Journal of Biological Chemistry, 2014, 5 , 1 .	4.3	35
21	Cysteineâ€rich protein 61 (CCN1) and connective tissue growth factor (CCN2) at the crosshairs of ocular neovascular and fibrovascular disease therapy. Journal of Cell Communication and Signaling, 2013, 7, 253-263.	3.4	31
22	Degradome Products of the Matricellular Protein CCN1 as Modulators of Pathological Angiogenesis in the Retina. Journal of Biological Chemistry, 2013, 288, 23075-23089.	3.4	29
23	New Insights into the Function of the Matricellular CCN1: an Emerging Target in Proliferative Retinopathies. Journal of Ophthalmic and Vision Research, 2013, 8, 77-82.	1.0	8
24	Molecular control of vascular development by the matricellular proteins () and (). Trends in Developmental Biology, 2013, 7, 59-72.	1.0	17
25	Connective Tissue Growth Factor Regulates Retinal Neovascularization through p53 Protein-dependent Transactivation of the Matrix Metalloproteinase (MMP)-2 Gene. Journal of Biological Chemistry, 2012, 287, 40570-40585.	3.4	44
26	Selective Blockade of Cytoskeletal Actin Remodeling Reduces Experimental Choroidal Neovascularization., 2011, 52, 2490.		17
27	The Matricellular Protein Cysteine-rich Protein 61 (CCN1/Cyr61) Enhances Physiological Adaptation of Retinal Vessels and Reduces Pathological Neovascularization Associated with Ischemic Retinopathy. Journal of Biological Chemistry, 2011, 286, 9542-9554.	3.4	38
28	The CCN Genes as the "Master―Regulators of Angiogenesis, Vasculogenesis, Fibrogenesis and Cell Differentiation/Fate Specification in Mechanical Force-Driven Developmental Processes and Pathological Events. , 2010, , 57-76.		0
29	Mechanical Regulation of the Proangiogenic Factor CCN1/CYR61 Gene Requires the Combined Activities of MRTF-A and CREB-binding Protein Histone Acetyltransferase. Journal of Biological Chemistry, 2009, 284, 23125-23136.	3.4	101
30	Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiological Genomics, 2008, 36, 1-14.	2.3	49
31	Cysteine-Rich Protein 61 and Connective Tissue Growth Factor Induce Deadhesion and Anoikis of Retinal Pericytes. Endocrinology, 2008, 149, 1666-1677.	2.8	49
32	Forkhead Transcription Factor FOXO3a Is a Negative Regulator of Angiogenic Immediate Early Gene CYR61, Leading to Inhibition of Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia. Circulation Research, 2007, 100, 372-380.	4.5	102
33	Matrix Metalloproteinase-2 Expression and Apoptogenic Activity in Retinal Pericytes: Implications in Diabetic Retinopathy. Annals of the New York Academy of Sciences, 2007, 1103, 196-201.	3.8	42
34	Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins FEBS Journal, 2006, 273, 3639-3649.	4.7	163
35	Mechanical Stretch Modulates the Promoter Activity of the Profibrotic Factor CCN2 through Increased Actin Polymerization and NF- \hat{I}^{g} B Activation. Journal of Biological Chemistry, 2006, 281, 20608-20622.	3.4	74
36	The Cysteineâ€Rich Protein 61 Mediates Mechanical Stretchâ€Induced Gene Expression in Smooth Muscle Cells. FASEB Journal, 2006, 20, A534.	0.5	0

#	Article	IF	CITATIONS
37	Cyr61 mediates the expression of VEGF, \hat{l} ±v-integrin, and \hat{l} ±-actin genes through cytoskeletally based mechanotransduction mechanisms in bladder smooth muscle cells. Journal of Applied Physiology, 2005, 98, 2344-2354.	2.5	63
38	REGULATION OF CCN PROTEINS BY ALTERATIONS OF THE CYTOSKELETON. , 2005, , 177-196.		2
39	Regulation of connective tissue growth factor (CTGF/CCN2) gene transcription and mRNA stability in smooth muscle cells. Involvement of RhoA GTPase and p38 MAP kinase and sensitivity to actin dynamics. FEBS Journal, 2004, 271, 4436-4450.	0.2	44
40	Regulation of Cyr61/CCN1 gene expression through RhoA GTPase and p38MAPK signaling pathways. Role of CREB and AP-1 transcription factors. FEBS Journal, 2003, 270, 3408-3421.	0.2	73
41	Molecular Response of the Bladder to Obstruction. , 2003, 539, 195-216.		7
42	Cyr61 and CTGF are molecular markers of bladder wall remodeling after outlet obstruction. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E765-E774.	3.5	53
43	Regulation of Cyr61 gene expression by mechanical stretch through multiple signaling pathways. American Journal of Physiology - Cell Physiology, 2001, 281, C1524-C1532.	4.6	77
44	Identification of stretch-responsive genes in pulmonary artery smooth muscle cells by a two arbitrary primer-based mRNA differential display approach. Molecular and Cellular Biochemistry, 1999, 197, 87-96.	3.1	10
45	Mechanical Stretch Induces Platelet-activating Factor Receptor Gene Expression Through the NF-κB Transcription Factor. Journal of Molecular and Cellular Cardiology, 1999, 31, 1345-1355.	1.9	47
46	Isolation of a developmentally-regulated expressed sequence tag from bladder tissue using the mRNA differential display. IUBMB Life, 1996, 40, 1011-1016.	3.4	1
47	Chronic UVB- and all-trans retinoic-acid-induced qualitative and quantitative changes in hairless mouse skin. Journal of Photochemistry and Photobiology B: Biology, 1995, 28, 125-135.	3.8	34