James F Gillooly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6470870/publications.pdf

Version: 2024-02-01

38 9,028 23 37 g-index

42 42 42 12038

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	TOWARD A METABOLIC THEORY OF ECOLOGY. Ecology, 2004, 85, 1771-1789.	3.2	5,745
2	Effects of size and temperature on developmental time. Nature, 2002, 417, 70-73.	27.8	798
3	The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 140-145.	7.1	441
4	Scaling of number, size, and metabolic rate of cells with body size in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4718-4723.	7.1	262
5	Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecology Letters, 2003, 6, 990-995.	6.4	215
6	The metabolic basis of whole-organism RNA and phosphorus content. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11923-11927.	7.1	151
7	Predicting natural mortality rates of plants and animals. Ecology Letters, 2008, 11, 710-716.	6.4	137
8	The energetic basis of acoustic communication. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1325-1331.	2.6	136
9	Energetic and biomechanical constraints on animal migration distance. Ecology Letters, 2012, 15, 104-110.	6.4	127
10	Energetic basis of colonial living in social insects. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3634-3638.	7.1	123
11	Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants. Ecology Letters, 2002, 5, 611-613.	6.4	120
12	Nuclear DNA Content Varies with Cell Size across Human Cell Types. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019091.	5.5	95
13	Energetics of stress: linking plasma cortisol levels to metabolic rate in mammals. Biology Letters, 2016, 12, 20150867.	2.3	76
14	LINKING GLOBAL PATTERNS IN BIODIVERSITY TO EVOLUTIONARY DYNAMICS USING METABOLIC THEORY. Ecology, 2007, 88, 1890-1894.	3.2	66
15	Dinosaur Fossils Predict Body Temperatures. PLoS Biology, 2006, 4, e248.	5. 6	60
16	Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach. Scientific Reports, 2020, 10, 645.	3.3	50
17	The mechanistic basis of the metabolic theory of ecology. Oikos, 2007, 116, 1073-1077.	2.7	49
18	Effects of metabolic rate on protein evolution. Biology Letters, 2007, 3, 655-660.	2.3	48

#	Article	IF	CITATIONS
19	RESPONSE TO FORUM COMMENTARY ON "TOWARD A METABOLIC THEORY OF ECOLOGY― Ecology, 2004, 85, 1818-1821.	3.2	47
20	Body mass scaling of passive oxygen diffusion in endotherms and ectotherms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5340-5345.	7.1	44
21	Eusocial insects as superorganisms. Communicative and Integrative Biology, 2010, 3, 360-362.	1.4	35
22	A broad-scale comparison of aerobic activity levels in vertebrates: endotherms versus ectotherms. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162328.	2.6	33
23	Changes in body temperature influence the scaling of and aerobic scope in mammals. Biology Letters, 2007, 3, 100-103.	2.3	27
24	Evaluating the influences of temperature, primary production, and evolutionary history on bivalve growth rates. Paleobiology, 2019, 45, 405-420.	2.0	22
25	Explaining differences in the lifespan and replicative capacity of cells: a general model and comparative analysis of vertebrates. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3976-3980.	2.6	20
26	Brain size varies with temperature in vertebrates. PeerJ, 2014, 2, e301.	2.0	20
27	Response to Comment on "Global Biodiversity, Biochemical Kinetics, and the Energetic-Equivalence Rule". Science, 2003, 299, 346c-346.	12.6	11
28	Energetic constraints on an early developmental stage: a comparative view. Biology Letters, 2008, 4, 123-126.	2.3	11
29	Stridulation by <i>Jadera haematoloma </i> (Hemiptera: Rhopalidae): Production Mechanism and Associated Behaviors. Annals of the Entomological Society of America, 2012, 105, 118-127.	2.5	9
30	Vertebrate blood cell volume increases with temperature: implications for aerobic activity. PeerJ, 2014, 2, e346.	2.0	9
31	Temperature effects on virion volume and genome length in dsDNA viruses. Biology Letters, 2016, 12, 20160023.	2.3	9
32	Predicting egg size across temperatures in marine teleost fishes. Fish and Fisheries, 2020, 21, 1027-1033.	5.3	8
33	Common metabolic constraints on dive duration in endothermic and ectothermic vertebrates. PeerJ, 2016, 4, e2569.	2.0	8
34	How reliable is the biological time clock?. Nature, 2003, 424, 270-270.	27.8	5
35	Allometric scaling of Lyapunov exponents in chaotic populations. Population Ecology, 2020, 62, 364-369.	1.2	5
36	Host cell volume explains differences in the size of DsDNA viruses. Virus Research, 2021, 295, 198321.	2.2	3

-	#	Article	IF	CITATIONS
	37	Evaluating the tradeoff between offspring number and survivorship across fishes, amphibians, reptiles and mammals. Oikos, 2021, 130, 798-807.	2.7	3
;	38	Idiographic and nomothetic approaches to heterogeneity are complementary: Response to comments on "Evaluating the influences of temperature, primary production, and evolutionary history on bivalve growth rates― Paleobiology, 2020, 46, 275-277.	2.0	0