

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6470819/publications.pdf Version: 2024-02-01

Χιν Ζησι

#	Article	IF	CITATIONS
1	Microwave Optomechanically Induced Transparency and Absorption Between 250 and 450 mK. Journal of Low Temperature Physics, 2023, 210, 562-572.	1.4	2
2	Electric circuit model of microwave optomechanics. Journal of Applied Physics, 2021, 129, 114502.	2.5	8
3	High- <i>Q</i> Silicon Nitride Drum Resonators Strongly Coupled to Gates. Nano Letters, 2021, 21, 5738-5744.	9.1	12
4	A macroscopic object passively cooled into its quantum ground state of motion beyond single-mode cooling. Nature Communications, 2021, 12, 6182.	12.8	20
5	Geometrical nonlinearity of circular plates and membranes: An alternative method. Journal of Applied Physics, 2020, 128, 104501.	2.5	8
6	Beyond linear coupling in microwave optomechanics. Physical Review Research, 2020, 2, .	3.6	12
7	On-chip Thermometry for Microwave Optomechanics Implemented in a Nuclear Demagnetization Cryostat. Physical Review Applied, 2019, 12, .	3.8	20
8	Surface-Induced Near-Field Scaling in the Knudsen Layer of a Rarefied Gas. Physical Review Letters, 2018, 120, 036802.	7.8	7
9	Measuring Frequency Fluctuations in Nonlinear Nanomechanical Resonators. ACS Nano, 2018, 12, 5753-5760.	14.6	19
10	Magnetic Resonance with Squeezed Microwaves. Physical Review X, 2017, 7, .	8.9	50
11	Broadband non-contact characterization of epitaxial graphene by near-field microwave microscopy. Nanotechnology, 2017, 28, 335702.	2.6	7
12	Nonlinear frequency transduction of nanomechanical Brownian motion. Physical Review B, 2017, 96, .	3.2	22
13	Manipulating Fock states of a harmonic oscillator while preserving its linearity. Physical Review A, 2016, 94, .	2.5	10
14	Reaching the quantum limit of sensitivity in electron spin resonance. Nature Nanotechnology, 2016, 11, 253-257.	31.5	141
15	Controlling spin relaxation with a cavity. Nature, 2016, 531, 74-77.	27.8	123
16	Graphene FETs With Aluminum Bottom-Gate Electrodes and Its Natural Oxide as Dielectrics. IEEE Transactions on Electron Devices, 2015, 62, 2769-2773.	3.0	36
17	Multiplexed readout of transmon qubits with Josephson bifurcation amplifiers. Physical Review A, 2014, 90, .	2.5	23
18	High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID array. Physical Review B, 2014, 89, .	3.2	66

Хім Zhou

#	Article	IF	CITATIONS
19	Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes. Nanotechnology, 2014, 25, 495703.	2.6	6
20	Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nature Physics, 2013, 9, 179-184.	16.7	150
21	Single charge detection in capacitively coupled integrated single electron transistors based on single-walled carbon nanotubes. Applied Physics Letters, 2012, 101, .	3.3	9
22	Size effects on hopping conduction in Si nanocrystals. , 2010, , .		0
23	Current fluctuations in three-dimensionally stacked Si nanocrystals thin films. Applied Physics Letters, 2010, 96, 092112.	3.3	7
24	Carrier transport by field enhanced thermal detrapping in Si nanocrystals thin films. Journal of Applied Physics, 2009, 105, 124518.	2.5	11
25	Electron transport in surface oxidized Si nanocrystal ensembles with thin film transistor structure. Journal of Applied Physics, 2009, 106, 044511.	2.5	11
26	Influence of nanocrystal size on the transport properties of Si nanocrystals. Journal of Applied Physics, 2008, 104, .	2.5	30
27	Modeling analysis of the MOCVD growth of ZnO film. Journal of Crystal Growth, 2007, 299, 303-308.	1.5	15
28	Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique. Applied Physics Letters, 2006, 88, 092101.	3.3	156
29	Photoluminescence study of ZnO nano-islands. Applied Surface Science, 2006, 253, 2226-2229.	6.1	15
30	Comparative study of diethylzinc and dimethylzinc for the growth of ZnO. Journal of Crystal Growth, 2005, 274, 489-494.	1.5	18
31	The deposition and annealing study of MOCVD ZnMgO. Journal of Crystal Growth, 2005, 277, 416-421.	1.5	34
32	MOCVD growth and properties of ZnO films using dimethylzinc and oxygen. Applied Physics A: Materials Science and Processing, 2005, 81, 809-812.	2.3	50
33	Correlation between green luminescence and morphology evolution of ZnO films. Applied Physics A: Materials Science and Processing, 2005, 81, 759-762.	2.3	205
34	Production of high-quality ZnO films by the two-step annealing method. Journal of Applied Physics, 2004, 96, 5308-5310.	2.5	48
35	MOCVD growth of self-arranged ZnO nanosize islands. Journal of Crystal Growth, 2004, 269, 362-366.	1.5	19