Ivanka I Teneva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6470801/publications.pdf

Version: 2024-02-01

933447 888059 28 294 10 17 citations g-index h-index papers 28 28 28 486 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Phytoplankton Communities and Cyanotoxin Production in Some Bulgarian Lowland Lakes and Reservoirs. Studia Ecologiae Et Bioethicae, 2022, 19, 97-109.	0.3	0
2	A Novel Approach for Fast Screening of a Complex Cyanobacterial Extract for Immunomodulatory Properties and Antibacterial Activity. Applied Sciences (Switzerland), 2022, 12, 2847.	2.5	2
3	Antitumor and Immunomodulatory Properties of the Bulgarian Endemic Plant Betonica bulgarica Degen et Neiĕ (Lamiaceae). Plants, 2022, 11, 1689.	3.5	2
4	PHYTOPLANKTON COMPOSITION AND ECOLOGICAL TOLERANCE OF THE AUTOTROPHIC PICOPLANKTON IN ATANASOVSKO LAKE (BLACK SEA COASTAL LAGOON, BULGARIA). Applied Ecology and Environmental Research, 2021, 19, 849-866.	0.5	0
5	Immunomodulating polysaccharide complexes and antioxidant metabolites from Anabaena laxa, Oscillatoria limosa and Phormidesmis molle. Algal Research, 2021, 60, 102538.	4.6	3
6	Phytoplankton composition with an emphasis of Cyanobacteria and their toxins as an indicator for the ecological status of Lake Vaya (Bulgaria) – part of the Via Pontica migration route. Biodiversity Data Journal, 2020, 8, e57507.	0.8	6
7	COMPARATIVE GENOME ANALYSIS OF SOME REPRESENTATIVES OF GENUS NOSTOC. , 2020, , .		0
8	Assessment of the cytotoxicity, antioxidant activity and chemical composition of extracts from the cyanobacterium Fischerella major Gomont. Chemosphere, 2019, 218, 93-103.	8.2	10
9	IN SEARCH OF NEW MOLECULAR MARKERS FOR TAXONOMIC CLASSIFICATION OF CYANOBACTERIA., 2019, , .		1
10	Outer membrane efflux protein (OMEP) is a suitable molecular marker for resolving the phylogeny and taxonomic status of closely related cyanobacteria. Phycological Research, 2018, 66, 31-36.	1.6	2
11	Content of phycoerythrin, phycocyanin, alophycocyanin and phycoerythrocyanin in some cyanobacterial strains: Applications. Engineering in Life Sciences, 2018, 18, 861-866.	3.6	26
12	LIGHT-REPRESSED PROTEIN (LRP) AS A SUITABLE MOLECULAR MARKER FOR PHYLOGENETIC ANALYSES AND TAXONOMIC CLASSIFICATION WITHIN CYANOBACTERIA. , $2018, , .$		0
13	THE ALLELOPATHIC EFFECTS OF TOXIN-PRODUCING CYANOBACTERIA ARE PH-DEPENDENT. , 2018, , .		1
14	Assessment of Cadmium, Nickel and Lead Toxicity by Using Green Algae Scenedesmus Incrassatulus and Human Cell Lines: Potential In Vitro Test-Systems for Monitoring of Heavy Metal Pollution., 2017, 2, 63-73.		3
15	Influence of captopril on the cellular uptake and toxic potential of microcystin-LR in non-hepatic adhesive cell lines. Toxicon, 2016, 111, 50-57.	1.6	12
16	In Vitro Cytotoxicity and Antioxidative Potential of Nostoc Microscopicum (Nostocales,) Tj ETQq0 0 0 rgBT /Overl	ock 10 Tf	50 ₁ 142 Td (0
17	Ragweed-allergic subjects have decreased serum levels of chemokines CCL2, CCL3, CCL4 and CCL5 out of the pollen season. Central-European Journal of Immunology, 2015, 4, 442-446.	1.2	12
18	Ecological status assessment of Skalenski Lakes (Bulgaria). Biotechnology and Biotechnological Equipment, 2014, 28, 82-95.	1.3	6

#	Article	IF	CITATIONS
19	Phylogenetic Relationships of Some Filamentous Cyanoprokaryotic Species. Evolutionary Bioinformatics, 2014, 10, EBO.S13748.	1.2	19
20	In vitro and in vivo toxicity evaluation of the freshwater cyanobacterium Heteroleiblenia kuetzingii. Open Life Sciences, 2013, 8, 1216-1229.	1.4	1
21	Genetic control of antibody production during collagenâ€induced arthritis development in heterogeneous stock mice. Arthritis and Rheumatism, 2012, 64, 3594-3603.	6.7	18
22	High-resolution mapping of a complex disease, a model for rheumatoid arthritis, using heterogeneous stock mice. Human Molecular Genetics, 2011, 20, 3031-3041.	2.9	20
23	Composition and Toxic Potential of Cyanoprokaryota in Vacha Dam (Bulgaria). Biotechnology and Biotechnological Equipment, 2010, 24, 26-32.	1.3	2
24	Phytoplankton community of the drinking water supply reservoir Borovitsa (South Bulgaria) with an emphasis on cyanotoxins and water quality. Open Life Sciences, 2010, 5, 231-239.	1.4	15
25	Karyotypic differences and evolutionary tendencies of some species from the subgenusObliquodesmus Mlad. of genusScenedesmus Meyen (Chlorophyta, Chlorococcales). Journal of Genetics, 2006, 85, 39-44.	0.7	4
26	MOLECULAR AND PHYLOGENETIC CHARACTERIZATION OFPHORMIDIUM SPECIES (CYANOPROKARYOTA)USING THE CPCB-IGS-CPCA LOCUS. Journal of Phycology, 2005, 41, 188-194.	2.3	21
27	Toxic potential of five freshwater Phormidium species (Cyanoprokaryota). Toxicon, 2005, 45, 711-725.	1.6	67
28	The freshwater cyanobacteriumLyngbya aerugineo-coerulea produces compounds toxic to mice and to mammalian and fish cells. Environmental Toxicology, 2003, 18, 9-20.	4.0	30