Camilla Hanquist Stokkevåg List of Publications by Year in descending order Source: https://exaly.com/author-pdf/647074/publications.pdf Version: 2024-02-01 46 papers 2,039 citations 623734 14 h-index 414414 32 g-index 48 all docs 48 docs citations 48 times ranked 4493 citing authors | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 1 | Impact of RBE variations on risk estimates of temporal lobe necrosis in patients treated with intensity-modulated proton therapy for head and neck cancer. Acta Oncol \tilde{A}^3 gica, 2022, 61, 215-222. | 1.8 | 5 | | 2 | Spatial Agreement of Brainstem Dose Distributions Depending on Biological Model in Proton Therapy for Pediatric Brain Tumors. Advances in Radiation Oncology, 2021, 6, 100551. | 1.2 | 3 | | 3 | Variation in relative biological effectiveness for cognitive structures in proton therapy of pediatric brain tumors. Acta OncolA³gica, 2021, 60, 267-274. | 1.8 | 6 | | 4 | Response to: †Comments on †cTemporal lobe sparing radiotherapy with photons or protons for cognitive function preservation in paediatric craniopharyngiomaâ by Toussaint, et al.: Prior similar field arrangement work and a need for variable RBE Useâ EM. Radiotherapy and Oncology, 2021, 158, 330-331. | 0.6 | 1 | | 5 | The Organ Sparing Potential of Different Biological Optimization Strategies in Proton Therapy.
Advances in Radiation Oncology, 2021, 6, 100776. | 1.2 | 5 | | 6 | Mixed Effect Modeling of Dose and Linear Energy Transfer Correlations With Brain Image Changes
After Intensity Modulated Proton Therapy for Skull Base Head and Neck Cancer. International Journal
of Radiation Oncology Biology Physics, 2021, 111, 684-692. | 0.8 | 17 | | 7 | Temporal lobe sparing radiotherapy with photons or protons for cognitive function preservation in paediatric craniopharyngioma. Radiotherapy and Oncology, 2020, 142, 140-146. | 0.6 | 15 | | 8 | The FLUKA Monte Carlo code coupled with an OER model for biologically weighted dose calculations in proton therapy of hypoxic tumors. Physica Medica, 2020, 76, 166-172. | 0.7 | 13 | | 9 | Outcomes and patterns of radiation associated brain image changes after proton therapy for head and neck skull base cancers. Radiotherapy and Oncology, 2020, 151, 119-125. | 0.6 | 10 | | 10 | Inter-patient variations in relative biological effectiveness for cranio-spinal irradiation with protons. Scientific Reports, 2020, 10, 6212. | 3.3 | 8 | | 11 | Implementation of a double scattering nozzle for Monte Carlo recalculation of proton plans with variable relative biological effectiveness. Physics in Medicine and Biology, 2020, 65, 225033. | 3.0 | 3 | | 12 | Normal tissue complication probability models in plan evaluation of children with brain tumors referred to proton therapy. Acta Oncol \tilde{A}^3 gica, 2019, 58, 1416-1422. | 1.8 | 12 | | 13 | Towards proton arc therapy: physical and biologically equivalent doses with increasing number of beams in pediatric brain irradiation. Acta OncolÁ³gica, 2019, 58, 1451-1456. | 1.8 | 27 | | 14 | Radiation doses to brain substructures associated with cognition in radiotherapy of pediatric brain tumors. Acta Oncol \tilde{A}^3 gica, 2019, 58, 1457-1462. | 1.8 | 13 | | 15 | OC-0612 A case-control study of brainstem substructures and morbidity following pediatric proton therapy. Radiotherapy and Oncology, 2019, 133, S323-S324. | 0.6 | 0 | | 16 | OC-0670 Temporal lobe sparing radiotherapy for cognitive preservation in pediatric brain tumor patients. Radiotherapy and Oncology, 2019, 133, S351-S352. | 0.6 | 0 | | 17 | PO-0934 Physical and biological doses with increasing number of proton beams for pediatric brain irradiation. Radiotherapy and Oncology, 2019, 133, 5502-5503. | 0.6 | 0 | | 18 | Radiation Associated Brain Necrosis following Proton Therapy for Head and Neck Skull Base and Intracranial Tumors. International Journal of Radiation Oncology Biology Physics, 2019, 105, S5-S6. | 0.8 | 5 | | # | Article | IF | Citations | |----|---|-----|-----------| | 19 | First application of a novel SRAM-based neutron detector for proton therapy. Radiation Measurements, 2019, 122, 45-52. | 1.4 | 4 | | 20 | Sensitivity study of the microdosimetric kinetic model parameters for carbon ion radiotherapy. Physics in Medicine and Biology, 2018, 63, 225016. | 3.0 | 9 | | 21 | PO-0933: Biological dose to brainstem substructures in scanning proton therapy of paediatric brain tumours. Radiotherapy and Oncology, 2018, 127, S505-S506. | 0.6 | 0 | | 22 | PO-1066: Delineation uncertainty and parotid gland doses and estimated NTCPs in head and neck proton therapy. Radiotherapy and Oncology, 2018, 127, S597-S598. | 0.6 | 0 | | 23 | EP-2013: Predicting growth hormone deficiency after childhood cancer from hypothalamic-pituitary structures. Radiotherapy and Oncology, 2018, 127, S1098-S1099. | 0.6 | 0 | | 24 | Exploration and application of phenomenological RBE models for proton therapy. Physics in Medicine and Biology, 2018, 63, 185013. | 3.0 | 86 | | 25 | EP-2012: Sensitivity study of the Microdosimetric Kinetic Model input parameters for carbon ion radiotherapy. Radiotherapy and Oncology, 2018, 127, S1097-S1098. | 0.6 | 0 | | 26 | Monte Carlo simulations of a low energy proton beamline for radiobiological experiments. Acta Oncol \tilde{A}^3 gica, 2017, 56, 779-786. | 1.8 | 24 | | 27 | Radiation-induced cancer risk predictions in proton and heavy ion radiotherapy. Physica Medica, 2017, 42, 259-262. | 0.7 | 18 | | 28 | Linear energy transfer distributions in the brainstem depending on tumour location in intensity-modulated proton therapy of paediatric cancer. Acta Oncológica, 2017, 56, 763-768. | 1.8 | 36 | | 29 | A phenomenological biological dose model for proton therapy based on linear energy transfer spectra. Medical Physics, 2017, 44, 2586-2594. | 3.0 | 33 | | 30 | Relative Biological Effectiveness and Its Impact on Dose Calculation in Proton Therapy. International Journal of Radiation Oncology Biology Physics, 2017, 99, E606-E607. | 0.8 | 0 | | 31 | The influence of inter-fractional anatomy variation on secondary cancer risk estimates following radiotherapy. Physica Medica, 2017, 42, 271-276. | 0.7 | 3 | | 32 | Biological dose and complication probabilities for the rectum and bladder based on linear energy transfer distributions in spot scanning proton therapy of prostate cancer. Acta Oncológica, 2017, 56, 1413-1419. | 1.8 | 19 | | 33 | OC-0516: Brainstem linear energy transfer in intensity-modulated proton therapy of paediatric brain tumours. Radiotherapy and Oncology, 2017, 123, S272-S273. | 0.6 | 0 | | 34 | EP-1607: Secondary cancer risk after particle therapy for organs distal or lateral to the target volume. Radiotherapy and Oncology, 2017, 123, S867-S868. | 0.6 | 0 | | 35 | OC-0342: Monte Carlo simulations of a low energy proton beam and estimation of LET distributions. Radiotherapy and Oncology, 2017, 123, S179-S180. | 0.6 | 0 | | 36 | EP-1592: Higher biological dose to heart and lung in IMPT of medulloblastoma patients due to increased LET. Radiotherapy and Oncology, 2017, 123, S858. | 0.6 | 0 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 37 | OC-0553: Relative risks of radiation-induced secondary cancer following particle therapy of prostate cancer. Radiotherapy and Oncology, 2016, 119, S265-S266. | 0.6 | O | | 38 | Modelling of organ-specific radiation-induced secondary cancer risks following particle therapy. Radiotherapy and Oncology, 2016, 120, 300-306. | 0.6 | 14 | | 39 | Design and characterization of an SRAM-based neutron detector for particle therapy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 804, 64-71. | 1.6 | 9 | | 40 | Risk of radiation-induced secondary rectal and bladder cancer following radiotherapy of prostate cancer. Acta Oncol \tilde{A}^3 gica, 2015, 54, 1317-1325. | 1.8 | 19 | | 41 | Estimated risk of radiation-induced cancer following paediatric cranio-spinal irradiation with electron, photon and proton therapy. Acta Oncol \tilde{A}^3 gica, 2014, 53, 1048-1057. | 1.8 | 41 | | 42 | ALICE HLT High Speed Tracking on GPU. IEEE Transactions on Nuclear Science, 2011, 58, 1845-1851. | 2.0 | 26 | | 43 | xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mi
mathvariant="normal">J<mml:mo
stretchy="false">/<mml:mi>i^</mml:mi> production in pp collisions at
<mml:math <="" altimg="si2.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>4.1</td><td>115</td></mml:math></mml:mo
</mml:mi
 | 4.1 | 115 | | 44 | Higher Harmonic Anisotropic Flow Measurements of Charged Particles in Pb-Pb Collisions>> <mml:mn>7at<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msqrt><mml:mi><mml:mi><mml:mi><mml:mi>N</mml:mi></mml:mi></mml:mi></mml:mi></mml:msqrt></mml:math></mml:mn> | | | display="inline"><mml:msqrt><mml:msub><mml:mi>s</mml:mi><mml:mrow><mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N</mml:mi>N< 46